
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Language-Independent Type-Dependent
Name Resolution

Hendrik van Antwerpen, Pierre Neron, Andrew Tolmach,
Eelco Visser, Guido Wachsmuth

Report TUD-SERG-2015-006

SERG

TUD-SERG-2015-006

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

@techreport{TUD-SERG-2015-006,
title = {Language-Independent Type-Dependent Name Resolution},
author = {Hendrik van Antwerpen and Pierre Neron and Andrew P. Tolmach

and Eelco Visser and Guido Wachsmuth},
year = {2015},
month = {July},
researchr = {http://researchr.org/publication/TUD-SERG-2015-006},
institution = {Delft University of Technology, Software Engineering Research Group},
number = {TUD-SERG-2015-006},
address = {Delft, The Netherlands},

}

c© copyright 2015, Software Engineering Research Group, Department of Software Technology, Faculty
of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology. All rights
reserved. No part of this series may be reproduced in any form or by any means without prior written
permission of the publisher.

Language-Independent Type-Dependent Name Resolution

Hendrik van Antwerpen
Delft University of Technology

h.vanantwerpen@student.tudelft.nl

Pierre Neron
Delft University of Technology

p.j.m.neron@tudelft.nl

Andrew Tolmach
Portland State University

apt@cs.pdx.edu

Eelco Visser
Delft University of Technology

visser@acm.org

Guido Wachsmuth
Delft University of Technology

guwac@acm.org

Abstract
We extend and combine two existing declarative formalisms,
the scope graphs of Neron et al. and type constraint systems,
to build a language-independent theory that can describe
both name and type resolution for realistic languages with
complex scope and typing rules. Unlike conventional static
semantics presentations, our approach maintains a clear sep-
aration between scoping and typing concerns, while still be-
ing able to handle language constructs, such as class field
access, for which name and type resolution are necessarily
intertwined. We define a constraint scheme that can express
both typing and name binding constraints, and give a for-
mal notion of constraint satisfiability together with a sound
algorithm for finding solutions in important special cases.
We describe the details of constraint generation for a model
language that illustrates many of the interesting resolution
issues associated with modules, classes, and records. Our
constraint generator and solver have been implemented in
the Spoofax Language Workbench.

1. Introduction
Name resolution and type resolution are two fundamental
concerns in programming language specification and imple-
mentation. Name resolution means determining the identi-
fier declaration corresponding to each identifier use in a pro-
gram. Type resolution means determining the type of each
identifier and expression in the program, as part of perform-
ing type checking or inference. (We consider only statically-
typed languages.) These two tasks are essential components
of many language processing tools, including interpreters,
compilers and IDEs. Moreover, precise descriptions of name
and type resolution are essential parts of a formal language
semantics. Yet there are as yet no universally accepted for-
malisms that support both specification and implementation
of these tasks. This is in notable contrast to the situation with
syntax definition, for which context-free grammars provide a

well-established declarative formalism that underpins a wide
variety of useful tools.

In this paper, we show how two existing formalisms,
scope graphs and type constraints, can be extended and com-
bined to begin filling this gap. Our formalisms: (i) have a
clear and clean underlying theory; (ii) handle a broad range
of common language features; (iii) are declarative, but are
realizable by practical algorithms and tools; (iv) are factored
into language-specific and language-independent parts, to
maximize re-use; and (v) apply to erroneous programs (for
which resolution fails or is ambiguous) as well as to correct
ones. Moreover, although name and type resolution are ob-
viously related, as far as possible we treat them as separate
concerns; this improves modularity and helps clarify exactly
what the relationships between these two tasks are.

Our starting point is recent work by Neron et al. [8],
which shows how name resolution for lexically-scoped lan-
guages can be formalized in a way that meets the criteria
above. The name binding structure of a program is captured
in a scope graph which records identifier declarations and
references and their scoping relationships, while abstracting
away program details. Its basic building blocks are scopes,
which correspond to sets of program points that behave
uniformly with respect to resolution. Each scope can con-
tain identifier declarations and references, each tagged with
its position in the original AST. Scopes can be connected
by edges representing lexical nesting or import of named
collections of declarations such as modules or records. A
scope graph is constructed from the program AST using a
language-dependent traversal, but thereafter, it can be pro-
cessed in a largely language-independent way. A resolution
calculus gives a formal definition of what it means for a
reference to identifier x at position i to resolve to a decla-
ration of x at position j, written xR

i 7−→ xD
j . Resolutions

are described as paths in the scope graph obeying certain
(language-specific) criteria; a given reference may resolve
to one, none, or many declarations. There is a resolution al-
gorithm that computes the set of declarations to which each

SERG Language-Independent Type-Dependent Name Resolution

TUD-SERG-2015-006 1

reference resolves, and is sound and complete with respect
to the calculus.

On the type resolution side, we adopt a well-known ap-
proach based on extracting constraints on types and type
variables from the AST and then using unification to solve
the constraints and instantiate the variables. This technique
goes back at least to Milner’s seminal paper on polymor-
phism [7], and has since been extended to cover many ad-
ditional language features, notably subtyping. Pottier and
Remy [11] give a detailed exposition, and show how an ef-
ficient resolution algorithm can be expressed using rewrite
rules. The constraint approach is most commonly used for
polymorphic type inference, but even for the simpler prob-
lem of monomorphic type checking, passing to constraints
is a useful way to separate the language-dependent part
of the task (generating the constraints) from the language-
independent part (solving the constraints).

The most important connection between identifier names
and static types is that each identifier should be associated
with a unique type (or, in a polymorphic language, a unique
type scheme). Scope graphs do not include explicit type in-
formation. However, if the language associates types with
identifier declarations, it is easy to obtain the type of an iden-
tifier reference by first resolving the reference to a decla-
ration and then looking up the associated type information
by position in the AST. This simple two stage approach—
name resolution using the scope graph followed by a sep-
arate type resolution stage—will work for many language
constructs. But the full story is more complicated, because
sometimes name resolution also depends on type resolution.
Consider the program fragments in Figure 1, written in a
language with nominal records and using standard dot nota-
tion for record field access. (Subscripts on identifiers repre-
sent source code positions and are not part of the language
itself.) In order to resolve the type of y7.x8 we must first
resolve the field name x8 to the appropriate declaration field
(x2 or x6). But this name resolution depends on the type of
y7, so we must resolve that type first, which again, requires
first resolving the name of y7. In general, we may need ar-
bitrarily deep recursion between the two kinds of resolution.
For example, to handle the nested record dereference on the
last line, we must first resolve the name of y9, then its type,
then the name and type of a10, and finally the name and type
of x11.

To solve this challenge, we reformulate the task of gener-
ating a scope graph from a given program as one of finding
a minimal solution to a set of scope constraints obtained by
an AST traversal. Scope constraints are analogous to typ-
ing constraints, but are resolved using a different (and sim-
pler) algorithm. We then introduce a class of scope variables
and modify the resolution calculus to characterize resolution
in potentially incomplete scope graphs (i.e., graphs charac-
terized by constraints involving unresolved scope variables).
We can then interleave (partial) scope graph resolution and

record A1{ x2: Int }
record B3{ a4: A5 x6:Bool }
...
y7.x8 // what is the type of y7 ?
y9.a10.x11 // what are the types of y9, y9.a10 ?

Figure 1. Program with records

type unification until a complete instantiation of all variables
(types, positions, and scopes) is obtained. This approach per-
mits us to resolve all the names and types for the record ex-
amples of Figure 1 and for a broad range of other language
constructs.

Contributions Our specific contributions are as follows:

• We show how to complement name resolution based on
scope graphs with type resolution based on type con-
straints including type-dependent name resolution (Sec-
tion 2).
• We extend the name resolution calculus and algorithm

of [8] to include a new kind of scope graph edge and to
handle incomplete scope graphs (Section 3, Section 6).
• We define a constraint language that can express both

monomorphic typing and name binding constraints, pa-
rameterized by an underlying notion of type compatibil-
ity, and define satisfiability for problems in this language
(Section 4).
• We describe the details of constraint generation for a

model language that illustrates many of the interesting
resolution issues associated with modules, classes, and
records (Section 5).
• We describe an algorithm for solving problems in our

constraint language instantiated to use nominal subtyp-
ing, and show that it is sound with respect to the satisfia-
bility specification (Section 6).

The implementation provides name and type resolution
in the IDE generated with the Spoofax Language Work-
bench [5] for the LMR model language used in this paper
and has been used to generate the scope graphs and type con-
straints for the examples in this paper automatically.

2. Combining Scope Graphs with Types
In this section we describe our approach to type-dependent
name resolution using examples in a small model language.
We show how scope graphs are used to model name binding,
combine scope graphs with type constraints to model type
resolution, and discuss extension of the two models to handle
type-dependent name resolution.

2.1 Example Language
We illustrate the ideas using LMR (Language with Modules
and Records), which extends the LM (Language with Mod-
ules) of [8]. The language does not aspire to be a real pro-
gramming language, but is designed to represent typical and

Language-Independent Type-Dependent Name Resolution SERG

2 TUD-SERG-2015-006

prog = decl∗

decl = module Id {decl∗} | import Qid | def bind
| record Id sup? {fdecl∗}

sup = extends Qid
fdecl = id : ty

ty = Int | Qid | ty → ty
exp = int | true | false | qid | exp ⊕ exp

| if exp then exp else exp
| fun (id : ty) {exp} | exp exp
| let bind∗ in exp | letpar bind∗ in exp
| letrec tbind∗ in exp
| new Qid {fbind∗} | with exp do exp
| exp . id

Qid = Id | Qid . Id
qid = id | Qid . id

bind = id = exp | tbind
tbind = id : ty = exp
fbind = id = exp

Figure 2. Syntax of LMR.

challenging name and type resolution idioms. The grammar
of LMR is defined in Fig. 2. The basic features that LMR
inherits from LM are:

• Modules and imports: modules can be nested and can
import other modules.
• Various flavours of variable binding constructs: variable

definitions (def), first-class functions (fun), and three
flavors of let bindings.
• Declarations (modules, definitions, records) in the same

module (scope) are mutually recursive.
• Qualified names allow access to the declaration in a mod-

ule without import.

LMR extends LM with the following features:

• Static, monomorphic types: function arguments require
explicit type annotations, but bindings of variables may
be left for type inference to resolve.
• Declaration of nominal record types with inheritance and

a corresponding subtyping relation on record types.
• Construction of (immutable) records with new using ref-

erences to fields for initialization.
• Access to the fields of a record value using dot notation
e.f.
• Implicit access to record fields using a Pascal-like with

construct.

In the rest of this section we study name and type resolu-
tion for a selection of LMR constructs that explain the ideas
of type-dependent name resolution using examples. Subse-
quent sections formalize these ideas.

def x1 = 1
def y2 = if x3 == 0 then 3 else x4

Scope graph

x1x3

y2

1
x4

Declarations

xD
1 : τ1 yD

2 : τ2

Reference constraints

xR
3 7→ δ1 δ1 : Int

xR
4 7→ δ2 δ2 : τ4

Type constraints

τ1 ≡ Int
Bool ≡ Bool
Int ≡ Int
τ3 ≡ Int
τ2 is τ3 t τ4

Solution

δ1 = xD
1 δ2 = xD

1

τ1 = Int τ2 = Int
τ3 = Int τ4 = Int

Figure 3. Declarations and references in global scope with
example program, scope graph, and constraints.

2.2 Declarations and References
We recall the concepts of the scope graph approach [8] and
extend it with type constraints. Consider the example in
Fig. 3, which shows an LMR program (top), and the scope
graph diagram and constraints (below) extracted from it.
Subscripts on identifiers represent AST positions. Thus, x1

and x3 are different occurrences of the same name x.

Scope Graph The key building block of a scope graph is
the scope, an abstraction of a set of nodes in the AST that
behave uniformly with respect to name binding. In a scope
graph diagram, scopes are represented by circles with num-
bers representing their identity. Scopes manage the visibility
of declarations. In a diagram, declarations are represented
by boxes with an incoming arrow from a scope. In the ex-
ample program x1 and y2 are declarations. In constraints we
denote declarations using a D superscript (e.g. xD

1). Refer-
ences are identifiers that refer to a declaration. In diagrams,
a reference is represented by means of a box with an arrow
pointing to its scope. In the program x3 and x4 are refer-
ences. In constraints we denote references with an R super-
script (e.g. xR

3). Name resolution in a scope graph consists of
finding a path in the scope graph from a reference to a dec-
laration. Since scope 1 contains a declaration xD

1 with the
name x, both references xR

3 and xR
4 resolve to the declaration

xD
1 , which we write xR

3 7−→ xD
1 .

Type Constraints Scope graphs do not include explicit
type information. However, by associating type information
with identifier declarations, it is would be easy to obtain the
type of an identifier reference by first resolving the refer-
ence to a declaration and then looking up the associated type
information by position in the AST. But that would require
a language-dependent mechanism, so instead we generate
constraints in a generic constraint language, as illustrated in
Fig. 3.

SERG Language-Independent Type-Dependent Name Resolution

TUD-SERG-2015-006 3

The constraints in the figure are categorized into three
groups. Declaration constraints associate types with decla-
rations. In the example, the constraints xD

1 : τ1 and yD
2 : τ2

associate type variables with declarations xD
1 and yD

2 . Refer-
ence constraints retrieve the types of variables by means of
a resolution constraint associating a declaration variable to a
reference, and a type association constraint for the declara-
tion variable. For example, the constraint xR

3 7→ δ1 requires
that reference xR

3 resolve to declaration variable δ1, and the
constraint δ1 : Int requires the type of that declaration to be
Int because of the use of the reference in the equality op-
erator. Finally, type constraints pose equality and subtype
constraints on the types assigned to declarations and expres-
sions. For example, the constraint τ1 ≡ Int arises from the
declaration of xD

1 , the constraint Bool ≡ Bool arises from
the condition of the if, the constraint Int ≡ Int arises from
the 0 argument of the equality, and τ3 ≡ Int arises from the
integer 3. (We will leave the trivial equality constraints out
in further examples.) Finally, the branches of the if gener-
ate a least upper-bound constraint τ2 is τ3 t τ4 on the types
of the branches.

It is also useful to categorize constraints by whether they
affect name resolution or resolution. To help visualize this
distinction, we use two different colors; later in the paper, we
add additional colors for further kinds of constraints. (But
you won’t lose essential information by reading this paper
in grayscale, since the categorization is strictly syntactic.)

Resolution The combination of a scope graph and type
constraints define a resolution problem. A solution for such
a problem is a substitution for the declaration and type vari-
ables in the problem such that (1) name resolutions are con-
sistent with the scope graph according to the rules of the
resolution calculus (Section 3), and (2) all type constraints
are satisfied. For the example, in the solution for Fig. 3, the
substitution for δ1 is dictated by the fact that the only path
through the scope path starting from xR

3 ends at xD
1 , and the

substitution for τ2 is deduced from the equality constraints
on τ1 and τ3, the unification of τ1 and τ4 (via xD

1), and the
lower-bound constraint on τ2.

2.3 Lexical Scope and Subtypes
Fig. 4 shows a larger LMR example that illustrates lexical
scope and subtype constraints.

Lexical scope is modeled using parent arrows between
scopes in the scope graph. In the example, scope 3, corre-
sponding to the body of the fun, is enclosed in scope 2, cor-
responding to the letrec, which is enclosed in scope 1, the
global scope of the program. Resolution of a reference pro-
ceeds from the scope of the reference to parent scopes until
a matching declaration is found. Thus, reference nR

5 resolves
to declaration nD

3 , which shadows nD
1 .

A function application such as fac6(n7 − 1) requires
that the type of the actual parameter (τ7) is a subtype of the
type of the formal parameter (τ6).

def n1 =
letrec fac2 : Int →Int = fun (n3: Int) {

if (n4 == 0) then 1
else n5 ∗ fac6(n7 − 1) }

in fac8(5)

Scope graph
1

2

3

fac2

n1

n3

fac8

n4

n5 n7fac6

Declarations

nD
1 : τ1 nD

3 : Int

facD
2 : Fun[Int ,Int]

Reference constraints

nR
4 7→ δ1 δ1 : Int

nR
5 7→ δ2 δ2 : Int

facR
6 7→ δ3 δ3 : Fun[τ6,Int]

nR
7 7→ δ4 δ4 : Int

facR
8 7→ δ5 δ5 : Fun[τ8,τ1]

Type constraints

τ2 � Fun[Int ,Int]
τ2 ≡ Fun[Int ,τ3]
τ4 ≡ Int
τ5 ≡ Int
τ7 ≡ Int
τ7 � τ6
τ3 is τ4 t τ5
τ9 ≡ Int
τ9 � τ8

Solution

δ1 = nD
3 δ2 = nD

3

δ3 = facD
2 δ4 = nD

3

δ5 = facD
2

τ1 = Int τ3 = Int
τ4 = Int τ5 = Int
τ6 = Int τ7 = Int
τ8 = Int τ9 = Int
τ2 = Fun[Int ,Int]

Figure 4. Lexical scoping modeled in a scope graph and
subtyping relations captured in constraints.

2.4 Imports
In addition to lexical scope, many programming languages
provide features for making declarations in scopes selec-
tively available ‘at a distance’. Examples of such constructs
are modules with imports in ML and classes with inheritance
in Java. To model such features, scope graphs provide asso-
ciated scopes and imports.

Associated Scope The LMR program in the left of Fig. 5
consists of two modules A1 and B3 and an import of the
former into the latter. The declarations in these modules
are contained in scopes 2 and 3, which are child scopes
of the root scope 1. These scopes are associated with the
declaration of the name of the module, which is represented
in a scope graph diagram with an open arrow from the
declaration (e.g. AD

1) to the scope (e.g. 2).

Imports The declarations in a scope are only visible to
references in lexically enclosed scopes, i.e. following parent
edges to child scopes. An import makes the declarations in
a scope visible in another, not necessarily lexically related,
scope. An import is represented by (1) a regular reference
of the name in its enclosing scope, and (2) an import in that
scope. The latter is represented using an open arrow from a
scope to a reference. For example, import A4 is represented

Language-Independent Type-Dependent Name Resolution SERG

4 TUD-SERG-2015-006

module A1 { def a2 = 4 }
module B3 { import A4

def b5 = a6 + 56
}

module A1 {
def x2 = 79

}
def y3 = A4.x5

Scope graph

1

23

a2

A1

b5

A4
B3

a6

Declarations and constraints

aD
2 : τ1 bD

5 : τ2
aR
6 7→ δ1 δ1 : Int
τ1 ≡ Int τ2 ≡ Int

Solution

δ1 = aD
2

τ1 = Int τ2 = Int

Scope graph

1

23

x2

A1A4

y3

x5

Declarations and constraints

xD
2 : τ1 yD

3 : τ2
xR
5 7→ δ1 δ1 : τ2
τ1 ≡ Int

Solution

δ1 = xD
2

τ1 = Int τ2 = Int

Figure 5. Module imports and qualified names with exam-
ple programs, scope graphs, and constraints.

by the reference AR
4 in scope 3 and an import arrow from

scope 3 to AR
4 .

Resolving through Imports Name resolution in the pres-
ence of associated scopes and imports proceeds as follows.
If a scope S1 contains an import xR

i , which resolves to a dec-
laration xD

j with associated scope S2, then all declarations in
S2 are reachable in S1. Thus, in the example, reference aR

6

resolves to declaration aD
2 since the import AR

4 resolves to
declaration AD

1 , and the associated scope 2 of AD
1 contains

declaration aD
2 . Note that the resolution calculus is param-

eterized by the policy used to disambiguate conflicting res-
olutions. Here we use the default policy of [8] that prefers
imported declarations over declarations in parents.

Qualified Names Another common pattern for accessing
the declarations in a scope is through qualified names. In-
stead of importing all declarations in a scope, a single dec-
laration is accessed. For example, in the right program from
Fig. 5 the expression A4.x5 refers to the declaration xD

2 in
module A1. This pattern can be modeled using the scope
graph ingredients that we have seen so far. The reference
xR

5 is defined as a reference of parentless scope 3. The only
declarations visible in scope 3 are through the import of AR

4 ,
which is itself a reference in scope 1. Thus, since AR

4 resolves
to AD

1 , the declarations in its associated scope 2 are visible in
scope 3, and therefore, xR

5 resolves to xD
2 .

2.5 Type-Dependent Name Resolution
To summarize, scope graphs provide a language-independent
model for formalizing the binding rules in programming

record A1 { x2 : Int }
def a3 = new A4{ x5=1 }
def y6 = a7.x8

record A1 { x2: Int }
def a3= new A4{ x5=1 }
def y6= with a7 do x8+1

Scope graph

1

23

x2

A1A4

a3

x5

y64

x8

ς1

a7

Declarations

xD
2 : Int aD

3 : τ1
yD
6 : τ4

Reference constraints

AR
4 7→ δ1

xR
5 7→ δ2 δ2 : τ2

aR
7 7→ δ4 δ4 : Rec(δ3)
δ3 ς1
xR
8 7→ δ5 δ5 : τ4

Type constraints

τ1 ≡ Rec(δ1) τ3 � τ2
τ3 ≡ Int

Solution

δ1 = AD
1 δ2 = xD

2

δ3 = AD
1 δ4 = aD

3

δ5 = xD
2 ς1 = s2

τ1 = Rec(AD
1) τ2 = Int

τ3 = Int τ4 = Int

Scope graph

1

23

x2

A1

A4

a3

x5

y64

x8

ς1

a7

Declarations

xD
2 : Int aD

3 : τ1
yD
6 : τ4

Reference constraints

AR
4 7→ δ1 xR

5 7→ δ2
δ2 : τ2 aR

7 7→ δ4
δ4 : Rec(δ3) δ3 ς1
xR
8 7→ δ5 δ5 : Int

Type constraints

τ1 ≡ Rec(δ1) τ3 � τ2
τ3 ≡ Int τ4 ≡ Int

Solution

δ1 = AD
1 δ2 = xD

2

δ3 = AD
1 δ4 = aD

3

δ5 = xD
2 ς1 = s2

τ1 = Rec(AD
1) τ2 = Int

τ3 = Int τ4 = Int

Figure 6. Field Access and with expression modeled by
virtual scopes, reference, association, and type constraints.

languages. Neron et al. [8] show that the approach covers
a wide range of name binding idioms. In this section we
have shown that scope graphs can be complemented with
type constraints to express the static typing requirements
on programs (to be formalized later in this paper). These
constraints use name resolution constraints to express the
dependence of type resolution on name resolution.

However, for some language constructs the resolution of
a name to its declaration depends on the type of another ex-
pression. For example, in field access expression e.f, in or-
der to resolve the field f, one first needs to find the type of
the expression e and then to look for f in the scope associ-
ated with the type. This scheme induces a dependency, not
only of the name resolution but also of the scope graph con-
struction (one does not know in which scope the reference f

SERG Language-Independent Type-Dependent Name Resolution

TUD-SERG-2015-006 5

lies) on the type resolution. We model such type-dependent
name resolution by means of constraints over the edges in
the scope graph.

Field Access Both examples in Fig. 6 illustrate the ap-
proach. In the left example, we are particularly interested in
the field access in the definition of yD

6 . The reference xR
8 is

a field access in the record value of aR
7 . Thus, xR

8 should be
resolved in the associated scope of the type of the receiver
expression aR

7 . This is similar to the resolution of a qualified
name, which we modeled by resolving the qualified name
in a parentless scope into which we imported the module.
Thus, we create a parentless scope (4) and add xR

8 as refer-
ence in that scope. However, in this case we do not know
(the name of) the record type that should be imported into
the parentless scope. Therefore, we proceed as follows. We
create a new scope identified by a scope variable ς1 that acts
as a placeholder for the scope that we want to import into
the parentless scope 4. We add a direct import edge (open
arrow) from scope 4 to scope ς1. Then, we resolve aR

7 us-
ing aR

7 7→ δ4 and obtain the type of its definition through
δ4 : Rec(δ3), which should be a record type identifying the
record definition δ3. We use a new form of scope graph con-
straint, δ3 ς1, to to specify that ς1 is the associated scope of
δ3. Solving these constraints will lead to a solution for ς1 —
in this case the associated scope of AD

1 , scope 2 — such that
the appropriate scope can be imported into scope 4. After
that xR

8 can be resolved as usual to its definition xR
8 7→ δ5,

which leads to its type δ5 : τ4.
Note that scope 3 and related edges and constraints model

the resolution of the field initializer in the definition of aD
3 ,

which is similar to the pattern for qualified names, but ap-
plies to a list of initializer expressions.

With As final example, we discuss an expression form
inspired by the with statement in the Pascal language. In
the expression with e do e’, the fields of the record value
of e are added to the lexical environment of e’. That is, a
variable reference x in e’ will be interpreted as a field of
the record value when the record has indeed a field with
name x; otherwise the variable is considered as a regular
reference in the enclosing lexical context. Static resolution
again requires resolving variables in e’ in the associated
scope of the record type of e, but this time defaulting to the
enclosing lexical scope.

Fig. 6 shows on its right how this is modeled for the ex-
pression with a7 do x8 + 1 using a scope (4) that directly
imports a placeholder scope (ς1) as the lexical context for
the references in the body of the with. The scope variable is
resolved through the constraints aR

7 7→ δ4, δ4 : Rec(δ3), and
δ3 ς1 to the associated scope of the type of aR

7 . Unlike in
the case of field access the scope for the body of the with
does have a parent scope (1), so that references that are not
to fields of the record are resolved in the lexical context.

2.6 Roadmap
The rest of this paper formalizes the approach to type-
dependent name resolution sketched in this section. Sec-
tion 3 reviews the resolution calculus of Neron et al. [8]
and extends it with direct imports between scopes. Section 4
defines the syntax and semantics of a constraint language
that can be used by language front-ends to express the name
binding and type rules of a language. In Section 5 we give
a complete account of extraction of constraints for all LMR
constructs. Section 6 describes a resolution algorithm that
finds solutions for resolution problems.

3. Extended Scope Graphs
In this section we recall the formal theory of name resolution
of Neron et al. [8] consisting of a scope graph model and
resolution calculus, and extend the model with direct imports
to model type-dependent name resolution as introduced in
the previous section.

3.1 Scope Graphs
A scope graph is a language-independent model for repre-
senting the name binding structure of programs. A scope
graph G is built around three basic types of nodes derived
from the program abstract syntax tree (AST), declarations,
references, and scopes:

• A declaration is an occurrence of an identifier that in-
troduces a name. xD

i denotes the definition of name x at
position i in the program. We omit the position i when
this in unimportant or can be inferred from context.D(G)
denotes the set of declarations of G.
• A reference is an occurrence of an identifier referring to

a declaration. We write xR
i for a reference with name x at

position i (again, we sometimes omit the position.)R(G)
denotes the set of references of G.
• A scope is an abstraction over a set of nodes in the

AST that behave uniformly with respect to name binding.
S(G) denotes the set of scopes of G.

Given these sets, a scope graph is defined by the following
functions:

• Each declaration d in D(G) is declared within a scope
denoted Sc(d).
• Each declaration d has an optional associated scope,
DSc(d) that is the scope corresponding to the body of
the declaration. For example, the declarations in a mod-
ule are elements of its associated scope.
• Each reference r in R(G) is declared within a scope

denoted Sc(r).
• Each scope S in S(G) has an optional parent scope P(S)

that corresponds to its lexically enclosing scope. The
parent relation has to be well-founded, i.e. there is no
infinite sequence Sn such that Sn+1 = P(Sn).

Language-Independent Type-Dependent Name Resolution SERG

6 TUD-SERG-2015-006

Resolution paths

s := D(xD
i) | I(xR

i , x
D
j) | I(S) | P

p := [] | s | p · p
(inductively generated)

[] · p = p · [] = p
(p1 · p2) · p3 = p1 · (p2 · p3)

Example well-formed paths predicate

WF(p)⇔ p ∈ P∗ · I(_)∗

Example specificity ordering on paths

D(_) < I(_)
(DI)

I(_) < P
(IP)

D(_) < P
(DP)

s1 < s2

s1 · p1 < s2 · p2
(Lex1)

p1 < p2

s · p1 < s · p2
(Lex2)

Figure 7. Resolution paths, well-formedness predicate, and
specificity ordering as introduced in [8]

Edges in scope graph
P(S1) = S2

I ` P : S1 −→ S2
(P)

yR
i ∈ I(S1) \ I I ` p : yR

i 7−→ yD
j

I ` I(yR
i , y

D
j) : S1 −→ DSc(yD

j)
(I)

S2 ∈ IS(S1)

I ` I(S2) : S1 −→ S2
(D)

Transitive closure

I ` [] : A� A
(N)

I ` s : A −→ B I ` p : B� C

I ` s · p : A� C
(T)

Reachable declarations
xD
i ∈ D(S′) I ` p : S� S′ WF(p)

I ` p · D(xD
i) : S� xD

i

(R)

Visible declarations
I ` p : S� xD

i

∀j, p′(I ` p′ : S� xD
j ⇒ ¬(p′ < p))

I ` p : S 7−→ xD
i

(V)

Reference resolution
Sc(xR

i) = S {xR
i } ∪ I ` p : S 7−→ xD

j

I ` p : xR
i 7−→ xD

j

(X)

Figure 8. Resolution calculus from [8] extended with direct
import rule D

• Each scope S has an associated set of references I(S),
that represents the imports in this scope

We define by comprehension the set of declarations enclosed
in a scope S, as D(S) = {d | Sc(d) = S}. We occasionally
subscript these defining functions by the particular graph G
to which they apply, writing e.g. DScG .

3.2 Resolution Calculus
Given this model, the resolution calculus defines the resolu-
tion of a reference to a declaration in a scope graph [8] as
the minimal path from reference to declaration through par-
ent and import edges. A path p is a list of steps representing
the atomic scope transitions in the graph. A step is a parent
step P, an import step I(yR, yD) where yR is the import used
and yD its corresponding declaration, or a declaration step
D(xD) leading to a declaration xD. Given a seen import set
I, a path p is a valid resolution in the graph from reference
xR
i to declaration xD

j when the following statement holds:

I ` p : xR
i 7−→ xD

j

The calculus in Fig. 8 defines the resolution relation in terms
of edges in the scope graph, reachable declarations, and
visible declarations.

The resolution calculus is parameterized by two predi-
cates on paths, a well-formedness predicate WF(p) and an
ordering relation < that allows the formalization of differ-
ent name-binding policies such as transitive vs non-transitive
imports. A typical definition of the well-formedness predi-
cate is no-parents-after-imports, which entails that a resolu-
tion cannot proceed to a lexical parent after an import tran-
sition. Fig. 7 presents the definition of paths (p) consisting
of steps (s) and examples of a path well-formedness pred-
icate and a path ordering relation. This configuration sup-
ports arbitrary levels of lexical scope (P∗), transitive imports
(I(_)∗), no-parents-after-imports (an I(_) step cannot be fol-
lowed by a P), prefer local declarations over imported dec-
larations (DI), prefer local declarations over declarations in
parents (DP), and prefer imported declarations over decla-
rations in parents (IP).

3.3 Direct Imports
In order to model type-dependent name resolution we extend
the scope graph with direct imports. A direct import defines
a direct link between two scopes without the use of a refer-
ence. In addition to its set of associated imports (references
of the form xR), a scope is extended with an associated set
of directly imported scopes IS(S). For these imports we in-
troduce the (D) scope transition rule, which is similar to the
(I) rule of the original calculus, except that this transition
does not require the intermediate resolution of a reference:

S2 ∈ IS(S1)

I ` I(S2) : S1 −→ S2
(D)

The complete resolution calculus with this new rule is pre-
sented in Figure 8.

SERG Language-Independent Type-Dependent Name Resolution

TUD-SERG-2015-006 7

4. Constraint Language
In this section we introduce the syntax and declarative se-
mantics of constraints.

4.1 Syntax of Constraints
Fig. 9 defines the syntax of constraints. The language inde-
pendent base terms of the constraint language are:

• Declarations in D, which are either ground declarations
xD
i of the program or variables δ

• References in R, which are ground references xR
i of the

program
• Scopes in S, which are either ground scopes of the pro-

gram denoted Si or variables ς
• Types in T, which are either type variables τ or type

constructor applications c(T, ..., T) with c ∈ CT , the set
of language-specific type constructors.

Given these terms we define the syntax of constraints, which
come in two flavors, facts and proper constraints. Facts,
defined by the sort F, correspond to known facts about a
program: the scope of a reference (Sc(R) := S), the scope
of a declaration (Sc(D) := S), the associated scope of a
declaration (D ; S), the parent of a scope (P (S) := S), a
named import in a scope (S ∈ I(S)), a direct import in a
scope (S ∈ IS(S)), and a subtype relation between types
(T <: T). Proper constraints, defined by the sort C, repre-
sent the restrictions on name and type resolution, which con-
sist of: resolution of a reference to a declaration (R 7→ D),
equality of two types (T ≡ T), subtype relation between two
types (T � T), associated scope of a declaration (D S), the
type of a declaration (D : T), and the least upper bound of
two sorts (T is T t T). Facts and constraints can be com-
bined using conjunction (C∧C) and True represents the triv-
ially satisfiable constraint. As before, we use different colors
to help distinguish between facts about the scope graph, facts
about the subtyping relation, proper typing constraints, and
proper resolution constraints.

Language-Specific Types The language of constraints de-
fined above is independent of the language under analysis,
except for the type constructors introduced by this language.
Therefore we assume a set of language specific types con-
structors CT and each constructors c has an associated ar-
ity c :: n. For example, Int and Bool are type construc-
tors with arity 0 and Fun is a type constructor with arity 2.
To represent user-defined types, such as classes in object-
oriented languages or algebraic data types in functional lan-
guages, a type constructor can also include the scope-graph
declaration corresponding to the type definition. For exam-
ple, record types in LMR are represented by Rec(d) with
d a declaration in the program. Thus, in Fig. 6, the record
definition A1 defines the type Rec(AD

1)

A := Sc(R) := S | D ; S | S ∈ I(S)

| Sc(D) := S | P (S) := S? | S ∈ IS(S)
| T <: T

C := True | R 7→ D | T ≡ T
| C ∧ C | D S | T � T
| D : T | T is T t T | A

D := δ | xD
i S := ς | Si S? := S | ⊥

R := xR
i T := τ | c(T, ..., T) with c ∈ CT

Figure 9. Syntax of constraints

4.2 Semantics of Constraints
In our approach, the abstract syntax tree of a program p is
reduced by a language-specific extraction function [[p]] to
a constraint following the syntax defined in Fig. 9. Given
commutativity and associativity of the conjunction operator,
such a constraint is equivalent to one of the form

F1 ∧ . . . ∧ Fn ∧ C1 ∧ . . . ∧ Cm
consisting of a set of facts Fi and a set of proper constraints
Cj . (We define an example extraction function in the next
section.) The facts define the scope graph and subtyping
relation with respect to which the proper constraints need
to be solved.

Interpretation of Facts We denote by F<: the set of facts
of the form T1 <: T2 in F that will be used to build the cor-
responding subtyping relation. We denote by FG the subset
formed by the other facts that will define the scope graph
of the program. Given a ground set of facts F , we denote
by |F | the interpretation of F as the pair G,≤ where ≤ is
the subtyping relation derived from F<: and G is the scope
graph derived from FG .

Subtyping From the set of facts F<: we derive the relation
≤ between ground types, built using the type constructors
in CT . We require each arguments in the signature of a
constructor c to be annotated with a variance parameter.
Thus the signature of a type constructor c is declared as
c :: v1 ∗ ... ∗ vn, where the vi are variance annotations.
A variance v is a non-empty subset of {−,+} written −
for contravariant, + for covariant and ± for invariant. We
also denote ≤ by ≤+, ≥ by ≤− and = by ≤±. Given
such signatures for all the type constructors, we define the
subtyping relation ≤ derived from a set F<: of subtyping
facts by the following inductive rules:

T ≤ T
T1 ≤ T2 T2 ≤ T3

T1 ≤ T3

T1 <: T2 ∈ F<:

T1 ≤ T2

c :: v1 ∗ ... ∗ vn ∀i, si ≤vi ti
c(s1, ..., sn) ≤ c(t1, ..., tn)

Scope graph The set of facts FG define the scope graph
of the program. These facts define the set of scopes, dec-

Language-Independent Type-Dependent Name Resolution SERG

8 TUD-SERG-2015-006

larations and references and the corresponding relations as
follows:

P (S) := S′ defines a new scope S and declares its parent
P(S) as S′ when S′ is not ⊥

Sc(xD) := S defines a new declaration xD and declares its
enclosing scope Sc(xD) as S

d; S declares scope S as the associated scope
DSc(d) of declaration d

Sc(xR) := S defines a new reference xR and declares its
enclosing scope Sc(xR) as S

r ∈ I(S) adds the reference r to the set of named im-
ports I(S) of scope S

S′ ∈ IS(S) adds the scope S′ to the set of direct imports
I(S) of scope S

The result is a correct scope graph according to Section 3
provided that the parent relation is well-founded.

Interpretation of Proper Constraints The interpretation of
a proper constraints (which we will just call constraints) is
defined as a truth value in a context, which is a triple of the
following elements:

• A scope graph G, as defined in Section 3
• A subtyping relation ≤ on ground types
• A typing environment ψ mapping declarations in D(G)

to types in T

A context G,≤, ψ satisfies a constraint C if the predicate
G,≤, ψ |= C holds. This predicate is defined by the set of
inductive rules in Fig. 10, where = is the syntactic equality
on terms, `G xR

i 7−→ xD
j is the resolution relation for graph

G and, when it exists, t≤S denotes the least upper bound of
types in S according to order ≤.

4.3 Program Resolution
The goal of the resolution of the program p is to build a
multi-sorted substitution φ and a typing environment ψ such
that, if [[p]] = Fp ∧ Cp then the following property holds:

|φ(Fp)|, ψ |= φ(Cp) (�)
Where φ(E) denotes the application of the substitution φ to
all the variables appearing in E that are in the domain of φ.
Note that φ has to make φ(Fp) a set of ground facts in order
to be able to interpret it whereas some free variables may
remain in φ(Cp). When the proposition � holds we say that
ψ and φ resolve p.

5. Constraint Collection
In this section, we show how to collect constraints for name
resolution and typechecking from programs in the LMR lan-
guage, whose concrete syntax was given in Fig. 2. The full
collection algorithm is shown in Figures 11 and 12. Col-
lection is performed by a single traversal over the program

G,≤, ψ |= True
(C-TRUE)

G,≤, ψ |= C1 G,≤, ψ |= C2

G,≤, ψ |= C1 ∧ C2
(C-AND)

ψ(d) = T

G,≤, ψ |= d : T
(C-TYPEOF)

`G p : xR
i 7→ xD

j

G,≤, ψ |= xR
i 7→ xD

j

(C-RESOLVE)

DScG(d) = S

G,≤, ψ |= d S (C-SCOPEOF)

t1 = t2
G,≤, ψ |= t1 ≡ t2

(C-EQ)

T1 ≤ T2

G,≤, ψ |= T1 � T2
(C-SUBTYPE)

T = t≤{T1, T2}
G,≤, ψ |= T is T1 t T2

(C-LUB)

Figure 10. Interpretation of proper constraints

that collects scope and subtyping facts, name resolution con-
straints, and typing constraints all in one pass. (The color
codings should help in distinguishing these different kinds
of constraints.)

To simplify and compress the presentation, we describe
the algorithm as operating over LMR’s concrete syntax.
(Our actual implementation operates over the abstract syntax
of LMR, and is written in DynSem, a declarative domain-
specific language for expressing semantics; although read-
able, it is relatively verbose.) The algorithm is defined by
a family of functions indexed by syntactic category (decl,
exp, etc.). Each function takes a syntactic item and possi-
bly one or more auxiliary parameters, and (usually) returns
a constraint, possibly involving one or more fresh variables
or new scope identifiers. Functions are defined by a set of
rules, one for each possible syntactic form in the category.
For example, [[−]]decls has four rules (for module, import,
def and record declarations, respectively), and is parame-
terized by the scope s into which declared identifiers are to
be installed; it returns the conjunction of constraints that en-
forces correct name and type resolution for the declaration,
some of which are derived by invoking generation functions
on syntactic sub-components.

To further streamline the presentation, we use the nota-
tion [[−]]c

∗
on sequences of items of syntactic category c to

mean the result of applying [[−]]c to each item and return-
ing the conjunction of the resulting constraints, or True for
the empty sequence. Similarly, [[−]]c? works on a optional c
item; it applies [[−]]c to the item if it is present and returns
True otherwise. Throughout, we use metavariable xi for a
(lower case) term variable at position i and Xi for an (upper
case) module or record name at position i, with one excep-

SERG Language-Independent Type-Dependent Name Resolution

TUD-SERG-2015-006 9

[[n]]exps,t := t ≡ Int

[[true]]exps,t := t ≡ Bool [[false]]exps,t := t ≡ Bool

[[e1 ⊕ e2]]
exp
s,t := t ≡ t3 ∧ [[e1]]

exp
s,t1
∧ [[e2]]

exp
s,t2

(⊕ has type t1 × t2 → t3)

[[if e1 then e2 else e3]]
exp
s,t := t is τ2 t τ3 ∧ [[e1]]

exp
s,Bool ∧ [[e2]]

exp
s,τ2 ∧ [[e3]]

exp
s,τ3 (fresh τ2, τ3)

[[Xs.xi]]
exp
s,t := xR

i 7→ δ ∧ δ : t ∧ [[Xs.xi]]
qid
s (fresh δ)

[[e1 e2]]
exp
s,t := τ2 � τ1 ∧ [[e1]]

exp
s,Fun[τ1,t]

∧ [[e2]]
exp
s,τ2 (fresh τ1, τ2)

[[e.xi]]
exp
s,t := P (S′) := ⊥ ∧ ς ∈ IS(S′) ∧ Sc(xR

i) := S′ ∧ δ1 ς ∧ xR
i 7→ δ2 (new S′)(fresh δ1, δ2, ς)

∧ δ2 : t ∧ [[e]]exps,Rec(δ1)

[[with e1 do e2]]
exp
s,t := P (S′) := s ∧ ς ∈ IS(S′) ∧ δ ς ∧ [[e1]]

exp
s,Rec(δ) ∧ [[e2]]

exp
S′,t (new S′)(fresh δ, ς)

[[new Xs.Xi {bs}]]
exp
s,t := P (S′) := s ∧ XR

i ∈ I(S′) ∧ XR
i 7→ δ ∧ t ≡ Rec(δ) (new S′)(fresh δ)

∧ [[Xs.Xi]]
qid
s ∧ [[bs]]fbind

∗
s,S′

[[xi = e]]
fbind
s,s′ := Sc(xR

i) := s′ ∧ xR
i 7→ δ ∧ δ : τ1 ∧ τ2 � τ1 ∧ [[e]]exps,τ2 (fresh δ, τ1, τ2)

Figure 12. Constraint generation for LMR.

tion: for compactness, we give just one rule for both qid and
Qid, in which xi can be either kind of identifier. We write
Xs for a dot-separated sequence of module or record names,
which can be empty (in which case, by convention, Xs.x
doesn’t have a leading dot).

Let us trace how the constraint generator works on some
of the different syntactic forms of LMR. A complete pro-
gram is a sequence of mutually-recursive top-level declara-
tions, so [[−]]prog creates a new root scope S in which they
are to be installed, generates a fact that S is a parentless
scope, and then conjoins the constraints for each declara-
tion, passing S as a parameter to the declaration generator
for decl. [[−]]decls generates a fact that installs any declared
identifier into scope s; the rest of its behavior depends on
the kind of declaration:

A module builds a new lexical child scope for its decla-
rations, so the generator function creates a new scope S′ and
generates facts that s is the parent of S′ and that the module
name declaration is associated with S′. It then conjoins the
constraints obtained by recursively invoking [[−]]declS′ on its
member declarations.

An import doesn’t declare an identifier, but instead gen-
erates constraints forcing the imported module name into
the import set and reference set for s. The [[−]]qids invoca-
tion generates additional constraints needed to describe ref-
erences to potentially qualified names. (We omit discussion
of the details, which are slightly complex.)

A def invokes an auxiliary generating function [[−]]bindsr,sd
to process the definition; sd is the scope into which the de-
fined identifier’s declaration should be installed, and sr is the
scope into which any identifier references in the defining ex-
pression should go. (In this invocation, the two scope param-
eters are the same, but the bind generator is invoked at other
places, e.g. for the letpar expression, where they are not.)
For bindings without explicit type annotation, a constraint

is generated giving the defined identifier a fresh type τ , and
function [[−]]exps,t is invoked to generate constraints for the
defining expression with the expected type t = τ . (We dis-
cuss generation of expression constraints below.) For bind-
ings with an explicit concrete type annotation, we also gen-
erate a constraint that τ be a subtype of the declared type,
after it is translated into an internal type constructor using
auxiliary function [[−]]tys . This function, unlike all the oth-
ers, returns a pair of things: the internalized type constructor,
and any constraints generated by references to record names
(which are installed into the scope given by parameter s).

A record is handled similarly to a module, but the
details are more complicated. If the record has a super-
type (non-empty extends clause), an auxiliary function
[[−]]supsr,sd,t

is invoked to generate constraints to describe the
inheritance. Parameter sr is the scope (here s) in which the
super-type name is to be resolved, sd is the scope (here S′)
into which the super-type’s scope is to be imported, and t
is the new record type (here Rec(XD

i)). The sup generator
builds a subtyping fact constraint (the only source of such
facts in LMR) that relates the new record type to the result
of resolving the super-type name, via a fresh declaration
variable δ. The fields of the new record are declared and
given type constraints by another auxiliary function.

Constraint generation for expressions is largely straight-
forward. The expr generator is parameterized by the scope s
into which references should be installed and the expected
type t of the expression (often a type variable). Expres-
sions introducing local bindings re-use the bind generator.
(There is function for sequential let, which is desugared
into nested letpar expressions before constraint genera-
tion is performed.) Note that generated constraints always
force an expression to have a precise type, which is de-
signed to be minimal in the subtyping hierarchy. Subtyping
is allowed only at function applications, at bindings to ex-

Language-Independent Type-Dependent Name Resolution SERG

10 TUD-SERG-2015-006

[[ds]]prog := P (S) := ⊥ (new S)
∧ [[ds]]decl

∗
S

[[moduleXi {ds}]]
decl
s := Sc(XD

i) := s (new S′)
∧ P (S′) := s

∧ XD
i ; S′ ∧ [[ds]]decl

∗
S′

[[import Xs.Xi]]
decl
s := XR

i ∈ I(s) ∧ [[Xs.Xi]]
qid
s

[[def b]]decls := [[b]]binds,s

[[xi = e]]
bind
sr,sd := Sc(xD

i) := sd (fresh τ)
∧ xD

i : τ ∧ [[e]]expsr,τ

[[xi : t = e]]
bind
sr,sd := Sc(xD

i) := sd (fresh τ)
∧ xD

i : t′ ∧ τ � t′
∧ C ∧ [[e]]expsr,τ

where [[t]]tysr = (t′, C)

[[recordXi u {fs}]]decls := Sc(XD
i) := s (new S′)

∧ P (S′) := s

∧ XD
i ; S′

∧ [[u]]sup?
s,S′,Rec(XD

i)
∧ [[fs]]fdecl

∗
s,S′

[[extends Xs.Xi]]
sup
sr,sd,t

:= XR
i ∈ I(sd) (fresh δ)

∧ XR
i 7→ δ

∧ t <: Rec(δ) ∧ [[Xs.Xi]]
qid
sr

[[xi:t]]
fdecl
sr,sd := Sc(xD

i) := sd
∧ xD

i : t′ ∧ C
where [[t]]tysr = (t′, C)

[[xi]]
qid
s := Sc(xR

i) := s

[[Xs.Xj.xi]]
qid
s := Sc(xR

i) := S′ (new S′)
∧ P (S′) := ⊥
∧ XR

j ∈ I(S′) ∧ [[Xs.Xj]]
qid
s

[[fun f(xi:t){e}]]
exp
s,t := P (S′) := s (new S′)

∧ Sc(xD
i) := S′

∧ xD
i : t′

∧ t ≡ Fun[t′,τ2] (fresh τ2)
∧ C ∧ [[e]]expS′,τ2

where [[t]]tys = (t′, C)

[[letrec bs in e]]exps,t := P (S′) := s (new S′)
∧ [[bs]]bind

∗
S′,S′ ∧ [[e]]expS′,t

[[letpar bs in e]]exps,t := P (S′) := s (new S′)
∧ [[bs]]bind

∗
S,S′ ∧ [[e]]expS′,t

[[Int]]tys := (Int ,True)

[[Bool]]tys := (Bool ,True)

[[t1 → t2]]
ty
s := (Fun[t′1,t

′
2], C1 ∧ C2)

where [[t1]]
ty
s = (t′1, C1)

and [[t2]]
ty
s = (t′2, C2)

[[Xs.Xi]]
ty
s := (Rec(δ), (fresh δ)

XR
i 7→ δ ∧ [[Xs.Xi]]

qid
s)

Figure 11. Constraint generation for LMR.

plicitly annotated identifiers, and in the conditional expres-
sions, for which a least-upper-bound constraint is generated.
Scope variables ς are introduced only for field dereference
and with expressions.

6. Resolution Algorithm
In this section, we describe an algorithm for computing
program resolutions in the sense of Section 4.3. Suppose we
have a program p from which we collect a set of constraints
[[p]] = Fp ∧ Cp, where Fp is a conjunction of facts and
Cp is a conjunction of proper constraints. Then recall that a
resolution for p is a multi-sorted substitution φ and a typing
environment ψ such that

|φ(Fp)|, ψ |= φ(Cp) (�)
Our algorithm works only for a restricted class of gener-
ated constraints: all facts must be ground, except that (i)
scope variables ς can appear in direct import facts (e.g.
ς ∈ IS(S)), and (ii) type variables τ and declaration vari-
ables δ can appear on the right-hand side of a subtyping
fact (e.g. Rec(AD

i) <: Rec(δ)). This restriction is met by
the constraints generated by the LMR collection algorithm
in Section 5. Broader classes of constraints might be useful
for other languages; we defer exploration of algorithms that
could handle these to future work.

6.1 Handling Variables in Facts
The basic approach of the algorithm is to apply the defini-
tions in Section 4.2 to the facts to build a scope graph and
a subtyping relation, and then use these to resolve proper
constraints of the form xR 7→ d or t1 � t2 in the context of
a conventional unification-based algorithm. However, since
the facts can contain variables, we cannot fully define the
scope graph or subtyping relation before starting constraint
resolution, because we don’t fully know φ. Thus, our algo-
rithm builds φ (and Ψ) incrementally. The key idea is that
we can resolve some proper constraints even when φ is not
yet fully defined, in such a way that the resolution remains
valid as it becomes more defined.

Subtyping The construction of the subtyping relation from
a set of ground facts given in Section 4.2 is monotonic. Let
≤F be the subtyping order generated from a set of ground
facts F . Then given two sets of ground facts F1 and F2, we
have the following property:

F1 ⊆ F2 ⇒ T1 ≤F1
T2 ⇒ T1 ≤F2

T2

If F is any set of (not necessarily ground) facts, and F is its
subset of ground facts, then for all substitutions φ mapping
type variable to ground types we have:

T1 ≤F T2 ⇒ T1 ≤φ(F) T2

Therefore, if we can deduce a subtyping relation between
two types by only using the ground facts then this relation
will still hold under any subsequent substitution.

SERG Language-Independent Type-Dependent Name Resolution

TUD-SERG-2015-006 11

R[I](xR) := RV [{xR} ∪ I, {}](x,Sc(xR))

RV [I, S](x, S) := RL[I, S](x, S)� RP [I, S](x, S)
RL[I, S](x, S) := RD[I, S](x, S)� RI [I, S](x, S)

RD[I, S](x, S) :=

{
∅ if S ∈ S
{xD

i |xD
i ∈ D(S)}

RI [I, S](x, S) :=

∅ if S ∈ S
exception if IS(S) contains a variable
⋃{

RL[I, {S} ∪ S](x, S′)
∣∣∣ S′ ∈ IS[I](S) ∪ IS(S)

}

IS[I](S) := {DSc(yD) | yR ∈ I(S)\I ∧ yD ∈ R[I](yR)}

RP [I, S](x, S) :=

{
∅ if S ∈ S
RV [I, {S} ∪ S](x,P(S))

Figure 13. Name resolution algorithm

Scope Graphs The situation is a bit more complicated with
respect to scope graphs. The non-strictly positive premise of
the (V) rule of the resolution calculus makes the derivation
of a resolution relation from a graph non-monotonic with
respect to additions to the graph. For example, suppose that
in some graph G a reference xR in a scope S resolves to
declaration xD

i in the parent scope S′. In a bigger graph G′
that also has a declaration xD

i′ in S itself, xR will resolve to
xD
i′ , and the old resolution to xD

i will be shadowed. Therefore
we can not simply resolve a reference in a graph built from
ground facts and expect this resolution to remain valid later
in the resolution process.

However, we have restricted the set of constraints we han-
dle so that almost all facts used for scope graph construction
are in fact ground from the beginning. The only exception is
for direct import declarations, where the imported scope can
be a scope variable; recall that this construction is essential
for expressing record field access, where the resolution of
the field name depends on the type of the record expression.
In order to handle these unknown direct imports, we define
an extension of the scope graph structure, called an incom-
plete scope graph, that also allows scope variables as direct
imports in addition to ground scopes. The construction of
the incomplete scope graph from a set of facts with variable
direct imports is similar to the one for ordinary scope graphs
given in Section 4.2.

The resolution calculus as presented in Fig. 8 is only
defined on ground scope graphs. Given an incomplete scope
graph G, a reference xR is said to resolve to a declaration xD

i

if and only if this resolution is valid in all ground instances
of this incomplete graph:

`G xR 7−→ xD
i

∆
= ∀ σ, `G.σ xR 7−→ xD

i (�)

where we write `G for the resolution relation for graph G
and G.σ is the ground scope graph corresponding to the
application of substitution σ to variables in G. In order to be
able to detect eventual duplicate resolutions in the program
we also want to ensure that an incomplete graph provides all
the possible resolutions of a given reference. In particular, if
a resolution is unique in an incomplete graph, we want it to
be unique in all its ground instances. An incomplete graph
G is stable for a reference xR, denoted G ↑ xR, if all the

resolutions in all its ground instances are the same:

G ↑ xR ∆
= ∀σ, σ′ `G.σ xR 7−→ xD

i ⇒`G.σ′ xR 7−→ xD
i

The resolution algorithm in Fig. 13 defines resolution in
(potentially) incomplete scope graphs. The � operator is
defined by S1 � S2

∆
= if S1 6= ∅ then S1 else S2. This

algorithm raises an exception if the graph is not stable for
the reference.

The algorithm is correct, i.e. we have

xD
i ∈ RG(xR) =⇒ `G xR 7−→ xD

i ∧ G ↑ xR (?)

where RG(xR) denotes the top-level resolution function
R[∅](xR) for the graph G. We now sketch a proof of this
fact. First, notice that the algorithm terminates using the
lexicographic ordering (#(R(G)\I),#(S(G)\S)), where
#(A) denotes the cardinality of set A. We next prove that on
ground scope graphs, this algorithm behaves like the stan-
dard resolution algorithm presented in [8]. If G is ground
then:

RG [I](xR) = {xD
i | I `G xR 7−→ xD

i } (i)
Proof. In this case, since the graph is ground, no exceptions
can be thrown. Therefore the proof is an adaptation of The-
orem 1 of [8]. The only differences in this version of the al-
gorithm are: (a) it has an extra case for direct imports, which
can be simply handled in the proof by adapting the named
import case of the original proof; and (b) it computes reso-
lution only for a single name argument rather than complete
sets of visible and reachable declarations, which induces a
weaker proof obligation.

Now let G be an incomplete scope graph and G′ one of
its instances. If a resolution on G terminates with a set of
declarations then the resolution on G′ does too:

RG [I](xR) = S =⇒ RG′ [I](xR) = S (ii)

Proof. By induction on the termination order of the algo-
rithm (#(R(()G)\I),#(S(G)\S)). Since exceptions are
never caught, and since an exception is triggered as soon
as a scope variable is encountered, if a run of the algorithm
on G starting from xR does terminate with a result then this
run is exactly the same on G′.

Finally, we can prove ?:

Language-Independent Type-Dependent Name Resolution SERG

12 TUD-SERG-2015-006

Proof. Let S = RG(xR) and pick xD
i ∈ S.

To prove that xR resolves to xD
i in G, let G′ be an arbitrary

ground instance of G. Using (ii) we have xD
i ∈ RG′(xR)

and by (i) we have `G′ xR 7−→ xD
i . By �, we get that

`G xR 7−→ xD
i .

To prove stability, let G1 and G2 be ground instances of G.
Then by (ii), RG1(xR) = S = RG2(xR), so by definition we
have G ↑ xR.

6.2 Constraint Solving Algorithm
In Fig. 14 we present an algorithm to solve the constraint
system from Section 4. The algorithm is a non-deterministic
rewrite system working over tuples (C,G, F<:, ψ) of a con-
straint, a scope graph, a set of subtyping facts, and a typing
environment. It is non-deterministic in the sense that rules
may be applied to any atomic constraint in any order consid-
ering that ∧ is associative and commutative.

Name resolution introduces ambiguity, since a refer-
ence xR may resolve to multiple definitions. If this hap-
pens the solver branches, picking a different resolution for
xR in every branch. The returned solution is a set of all the
(C,G, F<:, ψ) tuples the solver was able to construct. The
initial state of the solver is the collected constraint, the (in-
complete) scope graph built from the scope graph facts, the
subtyping facts, and an empty typing environment. The al-
gorithm will eliminate clauses from C while instantiating G
and F<: and filling ψ. The algorithm terminates when the
constraint is empty or no more clauses can be solved. Each
rule solves one constraint, possibly updating components of
the tuple or applying a substitution to it.

The S-RESOLVE rule solves xR 7→ δ constraints using
the resolution algorithm from Fig. 13. If a resolution is
found, it is substituted for the variable δ. If the scope graph
is incomplete, the algorithm might throws an exception, in
which case the constraint is left to to be solved later.

The S-ASSOC rule solves xD ς constraints, by looking
up the scope S associated with ground declaration xD in
the scope graph. By substituting S for ς , the scope graph
becomes more complete, possible allowing more references
to be resolved.

Rule S-EQUAL solves equality constraints T1 ≡ T2. It
uses first order unification U(T1, T2), as described in [1].
The resulting substitution is applied to the tuple.

Rule S-SUBTYPE solves constraints of the form t1 � t2
by checking that t1 ≤F<: t2 for the ground types t1 and t2.
The check might not succeed if F<: still contains variables,
in which case it might be solved later.

Rule S-LUB solves T is t1 t t2 constraints. It does so by
calculating the least upper bound t = (t1 t t2) of the ground
types t1 and t2 and generating a new equality constraint
T ≡ t. The solver depends here on a language-specific least
upper bound function t, which for LMR is presented in
Fig. 15 in the Appendix.

Constraints of the form xD : T are solved by rule S-
TYPEOF. The first rule is used the first time xD is encoun-
tered and just adds it to the typing environment. For every
next encounter, the other rule unifies the type T from the
constraint with the type ψ(xD) from the typing environment.

The trivial constraint True is handled by S-TRUE.

6.3 Correctness
We want to prove the soundness of the constraint resolution
algorithm, that is, that the solver produces a correct solution
to the program resolution problem. If the solver reduces to
an empty set of constraints, then the initial constraint was
satisfiable. Moreover we want to ensure that the produced
typing environment is a valid one, that is, it corresponds
to a solution. Therefore we want to ensure the following
property:

∀C,G, F<:, ψ,G′, F<:′, ψ′,

(C,G, F<:, ψ) −→∗ (True,G′, F<:′, ψ′)⇒
∃σ, σ(G),≤σ(F<:), ψ

′ |= σ(C1) (♦)

Proof. To prove this result we first state some results on the
auxiliary unification and least upper bound computations.

Unification If U(t1, t2) = σ then σt1 = σt2 ∧ σσ = σ.
See [1] for a survey on unification problem and unification
algorithms for first order terms.

Least Upper Bound Similarly, given a set of ground sub-
typing facts F , if (t1 t t2)

F−→ t then t is the least upper
bound of t1 and t2 for ≤F , i.e. t = t≤F

{t1, t2}. For LMR,
the least upper bound computation is presented in Fig. 15 in
the Appendix.

Resolution Soundness We now can prove the property ♦
of the constraint resolution algorithm. We first prove that for
each reduction step, if the output is satisfiable the input is
also satisfiable in the same definition-to-type environment.
This is stated by the following property:

∀(C1,G1, F
<:

1, ψ1), (C2,G2, F
<:

2, ψ2),

(C1,G1, F
<:

1, ψ1) −→ (C2,G2, F
<:

2, ψ2)⇒
∀σ, (σG2,≤σ(F<:

2), σψ2) |= σ(C2)⇒
∃σ′, (σ′G1,≤σ(F<:

1), σ
′ψ2) |= σ′(C1) (†)

The proof of this property is by case analysis on the
reduction step and is presented in Appendix A.1.

Using this result †, we can prove property ♦ by a simple
induction on the number of reduction steps.

7. Related Work
There are several ideas and efforts that deal directly or indi-
rectly with the interaction between typing and name binding.
These efforts are usually in the context of a specific language
or formalism. We have not found a language-independent

SERG Language-Independent Type-Dependent Name Resolution

TUD-SERG-2015-006 13

(xR 7→ δ ∧ C,G, F<:, ψ) −→ [δ 7→ xD](C,G, F<:, ψ) (S-RESOLVE)

where xD ∈ RG(xR) without exception

(xD ς ∧ C,G, F<:, ψ) −→ [ς 7→ S](C,G, F<:, ψ) (S-ASSOC)

where DScG(xD) = S

(T1 ≡ T2 ∧ C,G, F<:, ψ) −→ σ(C,G, F<:, ψ) (S-EQUAL)

where U(T1, T2) −→ σ

(T is t1 t t2 ∧ C,G, F<:, ψ) −→ (T ≡ t ∧ C,G, F<:, ψ) (S-LUB)

where F<: is ground and (t1 t t2)
F<:

−→ t

(t1 � t2 ∧ C,G, F<:, ψ) −→ (C,G, F<:, ψ) (S-SUBTYPE)

where t1 ≤F<: t2

(xD : T ∧ C,G, F<:, ψ) −→
{

(C,G, F<:, {xD 7→ T} ∪ ψ) if xD 6∈ dom(ψ)
(ψ(xD) ≡ T ∧ C,G, F<:, ψ) else

(S-TYPEOF)

(True ∧ C,G, F<:, ψ) −→ (C,G, F<:, ψ) (S-TRUE)

Figure 14. Constraint solving algorithm

approach to formalizing the interaction. A proposal to add
type-directed name resolution [10] to Haskell identifies the
dependency between type inference and name resolution as
a possible problem. Introduction of a name-resolution con-
straint in the type checker to defer name resolution is men-
tioned as a possible solution. In Java, member names are
resolved based on nominal types. In formal treatments for
Java-like languages such as Jinja [6] and Featherweight Java
[4], this is done by building a type-members mapping and
using a lookup function in the typing rules. In our approach
a custom mechanism is unnecessary; member resolution is
just a special case of a uniform approach to handling name
resolution. The JastAdd Java compiler [3] uses reference at-
tribute grammars to express the name analysis of Java pro-
grams. While the attribute definitions provide clean design
patterns for complex name binding problems, they do not
provide reusable language-independent abstractions. Indeed,
the patterns for tree traversal for name look-up in JastAddJ,
provided some of the inspiration for the scope graph and res-
olution calculus abstraction.

Type Inference Algorithms The origin of type inference
using constraints and the corresponding algorithm W goes
back to Damas and Milner in [7, 2]. Wand simplified it in
[17] and it has then been extended to support more com-
plex type systems including records [12], constrained types
to handle subtyping [15], GADTs [14, 13] and type classes
[16]. The HM(X) system [9] is a generalization of the Hind-
ley/Milner system parameterized in the constraint domain X,
it is thoroughly described by Pottier and Remy in [11]. How-
ever, all of these constraint systems are often presented in
an extension of the lambda calculus with relatively simplis-
tic name binding constructs. Our current presentation does

not support any kind of generalization over type variables.
In future work we would like to lift our connection between
types and name binding to handle more complex type sys-
tems such as the ones listed above, combining the power of
name resolution using scope graphs and the expressivity of
these type systems.

8. Conclusion
We have presented a theory that combines extended scope
graphs with type constraints to support language-independent
specification of the name binding and typing concerns of
programming languages. We have implemented a proof of
concept constraint generator and solver, and used it as analy-
sis framework in the Spoofax Language Workbench, apply-
ing it to LMR, a model language with interesting interactions
between name binding and typing.

Further research directions include proving complete-
ness of the constraint resolution algorithm (on suitably re-
stricted sets of constraints); extending the theory with oper-
ators to express additional requirements on solutions, such
as uniqueness of declarations; and applying the approach
with more advanced type-system features, such as paramet-
ric polymorphism.

References
[1] F. Baader and T. Nipkow. Term rewriting and all that. Cam-

bridge University Press, 1998.

[2] L. Damas and R. Milner. Principal type-schemes for func-
tional programs. In POPL, pages 207–212, 1982.

[3] T. Ekman and G. Hedin. Modular name analysis for java
using jastadd. In GTTSE, pages 422–436, 2006.

Language-Independent Type-Dependent Name Resolution SERG

14 TUD-SERG-2015-006

[4] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight java:
a minimal core calculus for java and gj. TOPLAS, 23(3):396–
450, 2001.

[5] L. C. L. Kats and E. Visser. The Spoofax language work-
bench: rules for declarative specification of languages and
IDEs. In OOPSLA, pages 444–463, 2010.

[6] G. Klein and T. Nipkow. A machine-checked model for a
java-like language, virtual machine, and compiler. TOPLAS,
28(4):619–695, 2006.

[7] R. Milner. A theory of type polymorphism in programming.
jcss, 17(3):348–375, 1978.

[8] P. Neron, A. P. Tolmach, E. Visser, and G. Wachsmuth. A
theory of name resolution. In ESOP, April 2015.

[9] M. Odersky, M. Sulzmann, and M. Wehr. Type inference with
constrained types. tapos, 5(1):35–55, 1999.

[10] S. Peyton Jones. Proposal: TypeDirectedNameResolution.
https://ghc.haskell.org/trac/haskell-prime/wiki/
TypeDirectedNameResolution. Last modified: 2009-11-
09, Accessed: 2015-03-25.

[11] F. Pottier and D. Rémy. The essence of ML type infer-
ence. In B. C. Pierce, editor, Advanced Topics in Types and
Programming Languages, chapter 10, pages 389–489. MIT
Press, 2005.

[12] D. Rémy. Typing record concatenation for free. In POPL,
pages 166–176, 1992.

[13] T. Schrijvers, S. L. P. Jones, M. Sulzmann, and D. Vytiniotis.
Complete and decidable type inference for gadts. In ICFP,
pages 341–352, 2009.

[14] V. Simonet and F. Pottier. A constraint-based approach to
guarded algebraic data types. TOPLAS, 29(1), 2007.

[15] V. Trifonov and S. F. Smith. Subtyping constrained types. In
SAS, pages 349–365, 1996.

[16] D. Vytiniotis, S. L. P. Jones, T. Schrijvers, and M. Sulzmann.
Outsidein(x) modular type inference with local assumptions.
J. Funct. Program., 21(4-5):333–412, 2011.

[17] M. Wand. A simple algorithm and proof for type inference.
Fundamenta Infomaticae, 10:115–122, 1987.

SERG Language-Independent Type-Dependent Name Resolution

TUD-SERG-2015-006 15

A. Proofs
A.1 Proof of property † in Section 6.3
In this proof, given a triple (G, F<:, ψ), we denote (G, F<:, ψ)M

the triple (G,≤F<: , ψ).
We want to prove the following property about the con-

straint resolution system presented in Figure 14:

∀(C1,G1, F
<:

1, ψ1), (C2,G2, F
<:

2, ψ2),

(C1,G1, F
<:

1, ψ1) −→ (C2,G2, F
<:

2, ψ2)⇒
∀σ, σ(G2, F

<:
2, ψ2)M |= σ(C2)⇒

∃σ′, σ′(G1, F
<:

1, ψ2)M |= σ′(C1) (†)

Proof. We prove this property by case analysis on the reduc-
tion:

(C1,G1, F
<:

1, ψ1) −→ (C2,G2, F
<:

2, ψ2)

- S-RESOLVE Assume:

(xR 7→ δ ∧ C,G, F<:, ψ) −→ [δ 7→ xD](C,G, F<:, ψ)

where xD ∈ RG(xR) and let σ′ be [δ 7→ xD].
Assume there is σ such that

σ(σ′(G, F<:, ψ))M |= σ(σ′C) (H)

then we want to prove:

∃σ1, σ1(G, F<:, σ′ψ)M |= σ1(xR 7→ δ ∧ C)

We have:

1. `G xR 7−→ xD by correctness of the name resolution
algorithm RG(),

2. `σσ′G xR 7−→ xD by definition,

3. σσ′(G, F<:, σ′ψ)M |= σσ′xR 7→ δ

4. (σσ′)(G, F<:, ψ)M |= (σσ′)C using H

5. (σσ′)(G, F<:, σ′ψ))M |= (σσ′)C since σ′σ′ = σ′

6. we conclude with σ1 = (σσ′) by C-AND rule of the
constraint interpretation with 3. and 5.

- S-ASSOC Assume:

(xD ς ∧ C,G, F<:, ψ) −→ [ς 7→ S](C,G, F<:, ψ)

where DSc(xD) = S and let σ′ be [ς 7→ S].
Assume there is σ such that

σ(σ′(G, F<:, ψ))M |= σ(σ′C) (H)

then we want to prove:

∃σ1, σ1(G, F<:, σ′ψ)M |= σ1(xD ς ∧ C)

We have:

1. DSc(xD) = S by the rewriting rule condition

2. σσ′(G, F<:, σ′ψ)M |= σσ′xD ς
3. (σσ′)(G, F<:, ψ)M |= (σσ′)C using H

4. (σσ′)(G, F<:, σ′ψ)M |= (σσ′)C since σ′σ′ = σ′

5. we conclude with σ1 = (σσ′) by C-AND rule of the
constraint interpretation with 2. and 4.

- S-EQUAL Assume:

(T1 ≡ T2 ∧ C,G, F<:, ψ) −→ σ′(C,G, F<:, ψ)

where σ′ = U(T1, T2).
Assume there is σ such that

σ(σ′(G, F<:, ψ))M |= σ(σ′C) (H)

then we want to prove:

∃σ1, σ1(G, F<:, σ′ψ)M |= σ1(T1 ≡ T2 ∧ C)

We have:

1. σ′t1 = σ′t2 by unification property

2. σσ′(G, F<:, σ′ψ)M |= σσ′T1 ≡ T2 by C-EQUAL rule
and 1.

3. (σσ′)(G, F<:, ψ)M |= (σσ′)C using H

4. (σσ′)(G, F<:, σ′ψ)M |= (σσ′)C since σ′σ′ = σ′ by
unification property

5. we conclude by C-AND rule of the constraint interpreta-
tion with 2. and 4.

- S-LUB Assume:

(T is t1 t t2 ∧ C,G, F<:, ψ) −→ (T ≡ t ∧ C,G, F<:, ψ)

where (t1 t t2)
F<:

−→ t.
Assume there is σ such that

σ(G, F<:, ψ)M |= σ(t ≡ T ∧ C) (H)

then we want to prove:

∃σ1, σ1(G, F<:, ψ)M |= σ1(T is t1 t t2 ∧ C)

We have:

1. σt = σT by inversion of C-AND and C-EQUAL seman-
tics rules on H

2. t = tF<:{t1, t2} by correctness of (t) reduction

3. σt = t ∧ σt1 = t1 ∧ σt2 = t2 since these are ground
terms

4. σ(G, F<:, ψ)M |= σ(T is t1 t t2) since F<: is ground

5. σ(G, F<:, ψ)M |= σ(C) using H

6. we conclude by C-AND rule of the constraint interpreta-
tion with 4. and 5.

Language-Independent Type-Dependent Name Resolution SERG

16 TUD-SERG-2015-006

(Int t Int)
F<:

−→ Int (LUB-INT)

(Rec(d) t Rec(d′))
F<:

−→
{

Rec(d) if Rec(d′) ≤F<: Rec(d)
(Rec(d) t Rec(d′′)) if Rec(d′) <: Rec(d′′) ∈ F<: (LUB-REC)

(Fun[t1,t2] t Fun[t3,t4])
F<:

−→ Fun[(t1 u t3),(t2 t t4)] (LUB-ARROW)

(Int u Int)
F<:

−→ Int (GLB-INT)

(Rec(d) u Rec(d′))
F<:

−→
{
Rec(d) if Rec(d) ≤F<: Rec(d′)

Rec(d′) if Rec(d′) ≤F<: Rec(d)
(GLB-REC)

(Fun[t1,t2] u Fun[t3,t4])
F<:

−→ Fun[(t1 t t3),(t2 u t4)] (GLB-ARROW)

Figure 15. LMR specific functions

- S-SUBTYPE Assume:

(t1 � t2 ∧ C,G, F<:, ψ) −→ (C,G, F<:, ψ)

Assume there is σ such that

σ(G, F<:, ψ)M |= σ(C) (H)

then we want to prove:

∃σ1, σ1(G, F<:, ψ)M |= σ1(t1 � t2 ∧ C)

We have:

1. t1 ≤F<: t2 by reduction rule hypothesis

2. σt1 ≤σ(F<:) σt2 by≤x monotonicity and since t1 and t2
are ground

3. σ(G, F<:, ψ)M |= σ(t1 � t2 by C-Subtype semantics
rule

4. we conclude by C-AND rule of the constraint interpreta-
tion with 3. and H

- S-DECLTYPEFIRST Assume:

(xD : T ∧ C,G, F<:, ψ) −→ (C,G, F<:, {xD 7→ T} ∪ ψ)

Assume there is σ such that

σ(G, F<:, {xD 7→ T} ∪ ψ)M |= σ(C) (H)

then we want to prove:

∃σ1, σ1(G, F<:, {xD 7→ T} ∪ ψ)M |= σ1(xD : T ∧ C)

We have:

1. σ(G, F<:, {xD 7→ T}∪ψ)M |= σ(xD : T) by C-TypeOf
semantics rule

2. we conclude by C-AND rule of the constraint interpreta-
tion with 1. and H

- S-DECLTYPENEXT Assume:

(xD : T ∧ C,G, F<:, ψ) −→ (ψ(xD) ≡ T ∧ C,G, F<:, ψ)

Assume there is σ such that

σ(G, F<:, ψ)M |= σ(ψ(xD) ≡ T ∧ C) (H)

then we want to prove:

∃σ1, σ1(G, F<:, ψ)M |= σ1(xD : T ∧ C)

We have:

1. σψ(xD) = σT by inversion of C-AND and C-Equal
semantics rules

2. σ(G, F<:, ψ)M |= σ(xD : T) by C-TypeOf rule

3. σ(G, F<:, ψ)M |= σ(C) using H

4. we conclude by C-AND rule of the constraint interpreta-
tion with 2. and 3.

- S-TRUE Assume:

(True ∧ C,G, F<:, ψ) −→ (C,G, F<:, ψ)

Assume there is σ such that:

σ(G, F<:, ψ)M |= σ(C) (H)

then we have:

1. σ(G, F<:, ψ)M |= σTrue by C-True rule

2. we conclude by C-AND rule of the constraint interpreta-
tion with 1. and H.

B. LMR Least upper bound computation
Algorithm in Fig. 15 is the least upper bound computation
for the LMR language. The correctness on this algorithm
relies on the property that each Rec type has a unique direct
ancestor.

SERG Language-Independent Type-Dependent Name Resolution

TUD-SERG-2015-006 17

Language-Independent Type-Dependent Name Resolution SERG

18 TUD-SERG-2015-006

TUD-SERG-2015-006
ISSN 1872-5392 SERG

