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Abstract
The formal semantics of a programming language and its implementation are typically separately
defined, with the risk of divergence such that properties of the formal semantics are not proper-
ties of the implementation. In this paper, we present DynSem, a domain-specific language for
the specification of the dynamic semantics of programming languages that aims at supporting
both formal reasoning and efficient interpretation. DynSem supports the specification of the
operational semantics of a language by means of statically typed conditional term reduction rules.
DynSem supports concise specification of reduction rules by providing implicit build and match
coercions based on reduction arrows and implicit term constructors. DynSem supports modular
specification by adopting implicit propagation of semantic components from I-MSOS, which al-
lows omitting propagation of components such as environments and stores from rules that do
not affect those. DynSem supports the declaration of native operators for delegation of aspects
of the semantics to an external definition or implementation. DynSem supports the definition of
auxiliary meta-functions, which can be expressed using regular reduction rules and are subject
to semantic component propagation. DynSem specifications are executable through automatic
generation of a Java-based AST interpreter.
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1 Introduction

The specification of the dynamic semantics is the core of a programming language design as
it describes the runtime behavior of programs. In practice, the implementation of a compiler
or an interpreter for the language often stands as the only definition of the semantics of
a language. Such implementations, in a traditional programming language, often lack the
clarity and the conciseness that a specification in a formal semantics framework provides.
Therefore, they are a poor source of documentation about the semantics. On the other hand,
formal definitions are not executable to the point that they can be used as implementations
to run programs. Even when both a formal specification and an implementation co-exist,
they typically diverge. As a result, important properties of a language as established based on
its formal semantics may not hold for its implementation. Our goal is to unify the semantics
engineering and language engineering of programming language designs [22] by providing a
notation for the specification of the dynamic semantics that can serve both as a readable
formalization as well as the source of an execution engine.

In this paper, we present DynSem, a DSL for the concise, modular, statically typed,
and executable specification of the dynamic semantics of programming languages. DynSem
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supports the specification of the operational semantics of a language by means of conditional
term reduction rules.

DynSem rules are statically typed with respect to the declaration of the signature of
constructors of abstract syntax nodes and values, and the declaration of typed (and
optionally named) reduction arrows.
DynSem supports concise specification of reduction rules by providing implicit build and
match coercions based on reduction arrows and implicit term constructors.
DynSem supports modular specification by adopting the implicit propagation of semantic
components from the I-MSOS (Implicitly Modular Structural Operational Semantics)
formalism [16], which allows omitting propagation of components such as environments
and stores from rules that do not affect those. The implicit semantic components
are explicated through a source-to-source transformation, to produce a complete and
unambigous specification. This formalizes informal conventions that are often adopted
in language specifications such as The Definition of Standard ML [14]. The declaration
of variable schemes for semantic components allows their concise identification in rules,
following typical naming conventions in typeset renderings of semantic rules.
DynSem supports the declaration of native operators for delegation of aspects of the
semantics to an external definition or implementation. For example, the details of the
semantics of numeric operations may be abstracted over by delegating to a library of
native numeric operators.
DynSem supports the definition of auxiliary meta-functions, which can be expressed using
regular reduction rules and are subject to semantic component propagation. Thus, one
can provide abstractions over run-time operations that one does want to define explicitly
in the semantics, without having to inline their definition in each rule that uses them.
DynSem specifications are executable through automatic generation of a Java-based AST
interpreter. DynSem specifications can be written either in big-step style or in small-step
style, but our interpreter generator is geared towards big-step style rules. While small-step
style rules are compiled as well, the interpreter generator does not (yet) provide any
optimizations (such as refocusing [18]) to reduce the excessive traversals inherent in
small-step specifications. The interpreter generated from big-step style specifications
has reasonable performance, allowing one to run and experiment with the design of a
language on concrete programs.

The DynSem language is integrated into the Spoofax language workbench, a tool for
the definition of (domain-specific) programming languages [11]. From a language definition,
Spoofax generates a complete programming environment including parser, type checker, and
language-aware editor (IDE). The DynSem integration of Spoofax extends these programming
environments with generated interpreters. DynSem itself is built using Spoofax and comes
with a full-fledged IDE.

The rest of the paper is organized as follows. In the next section we introduce the definition
of term reduction rules and the definition of signatures that declare sorts, constructors, and
arrows. In Section 3 we discuss the features that DynSem provides for supporting concise
definitions of rules. In Section 4 we describe the generation of interpreters from DynSem
specifications. Finally, in Section 5 and Section 6 we discuss related and future work.

2 DynSem Reduction Rules

The specification of a language semantics in DynSem is expressed using term reduction rules
such as the one presented in Figure 1. This rule is the fully explicit version of the definition
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rules
Env E ` Plus(e1, e2) :: Sto s1 −→ NumV(PlusI(n1, n2)) :: Sto s3
where

Env E ` e1 :: Sto s1 −→ NumV(n1) :: Sto s2,
Env E ` e2 :: Sto s2 −→ NumV(n2) :: Sto s3

Figure 1 Fully explicit addition reduction rule.

of the reduction of an addition constructor Plus in a language whose semantics uses both
an environment and a store. In general, a reduction rule in DynSem has the form

Rs ` t1 :: Ws a−→ t2 :: Ws’
where ps

and defines the reduction t1 a−→ t2 from a term matching term pattern t1 to a term
obtained by instantiating term pattern t2, provided that the premises ps succeed. Reduction
arrows are identified by their name and the type of their input (left) argument term. Arrows
can be, and typically are, unnamed (i.e. use the default name) as is the case in Figure 1.

The premises of a reduction rule are of one of the following forms:
A reduction premise is the (recursive) invocation Rs ` t :: Ws b−→ t’ :: Ws’ of a
reduction on the term t, matching the result against the term pattern t’. The premises
in Figure 1 are of this form.
An equality or inequality premise tests the equality or inequality of two terms. For
example, in Figure 6, the Ifz constructor has two corresponding reduction rules that are
disambiguated depending on the integer the first sub-term (the condition) reduces to.

Ws’ are used to describe the context in which a particular reduction takes place. For
example, the environment Env E and the store Sto S are semantics components in the rule
in Figure 1.

In the conclusion of a rule, the left-hand side terms (Rs, t1 and Ws) are patterns binding
the meta-variables they contain, while the terms on the right-hand side (t2 and Ws’) are
instantiated to construct the result of reduction. This is reversed in reduction premises,
where the left-hand side terms are term instantiations, while the right-hand side terms are
binding patterns. A variable can only be bound once per rule.

DynSem rules are statically typed with respect to the declaration of the signature of term
constructors, the declaration of typed (and optionally named) reduction arrows, and the
declaration of semantic components.

Term Signature. DynSem rules define reductions on terms that represent the abstract
syntax trees of a programming language. The abstract syntax tree constructors of a language
are declared as an algebraic signature, as illustrated in Figure 2. Semantic rules typically
use additional intermediate representations and final values, which are also represented using
terms and should also be declared in the algebraic signature. For example, in a big-step
semantics the values produced by reductions are typically not a subset of the abstract syntax,
but are defined as a separate set of terms.

The base components of an algebraic signature are sorts and constructors. The sorts
of the object language such as the sorts Expr and Bind in Figure 2 and the sort of the
intermediate or output values such as the sort of values V in Figure 3 are declared in the
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signature
sorts Expr Bind
constructors
Num : String → Expr
Plus : Expr * Expr → Expr
Var : String → Expr
Bind : String * Expr → Bind
Let : List<Bind> * Expr → Expr
Fun : String * Expr → Expr
App : Expr * Expr → Expr
Box : Expr → Expr
Unbox : Expr → Expr
SetBox : Expr * Expr → Expr
Seq : Expr * Expr → Expr
Ifz : Expr * Expr * Expr → Expr

Figure 2 Signatures of the object language.

signature
sorts V
semantic−components

Env = Map<String, V>
Sto = Map<Int, V>

constructors
NumV : Int → V {implicit}
ClosV : Expr * Env → V
BoxV : Int → V

arrows
Expr −→ V
List<Bind> b−→ Env

native operators
plusI : Int * Int → Int
str2int : String → Int

Figure 3 Auxiliary components.

signature
constructors
allocate : V −→ Int
write : Int * V −→ V
read : Int −→ V

Figure 4 Meta-functions.

signature
variables

E : Env
S : Sto

Figure 5 Variable Schemes.

corresponding sort section in the signature. Constructor declarations consist of a name,
the sorts of the argument terms, and the result sort.

In addition to the declared sorts, the parametric sorts, List and Map can be used in
signatures. Given a sort X, List<X> is the sort of lists of terms of sort X. The corresponding
terms are [], which denotes the empty list and [hd|tl], which denotes the list with head
element hd and tail tl (following Prolog list notation). Given two sorts X and Y, Map<X,Y>
denotes the sort of finite maps from terms of sort X to terms of sort Y. The corresponding
terms are {}, which denotes the empty mapping, {x 7→ v, S}, which extends the mapping
S by associating v to x, and S[l], which denotes the term associated with l in mapping S.
These sorts can be used directly in constructor signatures such as the Let constructor in
Figure 2 that takes a list of binders as first parameter.

Semantic Components. The specification of operational semantics using big-step rules
defines reduction relations that involve not only abstract syntax terms but also other entities,
known as semantic components, representing the state of a program under reduction, such
as an environment or a store. DynSem distinguishes two types of semantic components
based on how they are passed through the reduction rules: read-only and read-write semantic
components. Terms of any sort may be used as semantic component after being declared
as such. The semantic−components section in Figure 3 declares Env as a semantic
component of sort Map<String,V>, mapping identifiers (strings) to values, and Sto as a
semantic component of sort Map<Int,V>, mapping locations (integers) to values.

Semantic components appearing left of ` (in Rs) are read-only. These components
propagate downwards, i.e. are passed into premises, but do not propagate horizontally, i.e.
changes introduced by one premise are not visible in the next premise. A typical example of a
read-only component is an environment, mapping variables to values. Downward propagation
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corresponds to the lexical scope of variables. Components that appear right of :: are read-
write semantic components. Since the value of such components is threaded through the
computation, they appear on both the right and the left side of a reduction. A typical
example of a read-write component is a store mapping locations to values. Threading a store
is expressed as e :: Sto st −→ v :: Sto st’ when reduction of expression e into
value v changes the corresponding store form st to st’. Store threading corresponds to the
dynamic extent of store mappings.

Arrows. A reduction arrow defines a relation between terms, possibly involving semantics
components. However, only the sorts of the source and target terms of an arrow have to
be declared in its signature. The set of semantic components an arrow uses is inferred, as
described in Section 3. The signature in Figure 3 declares two arrows, the main evaluation
arrow −→ from expressions Expr to values V, and the binder reduction b−→ from lists of
binders to environments. Arrow declarations can be overloaded on the input sort. That is,
one can declare several arrows with the same name, as long as they have different input
types. For example, in Figure 3 we could also use −→ instead of b−→ to denote the reduction
from lists of binders to environments.

Native Operators and Meta Functions. The core rules of a semantics define reductions
on the abstract syntax terms of the language under consideration. However, some aspects
of the semantics we would like to delegate, i.e. not define directly. DynSem provides two
mechanism for such delegation.

A native operator is a function that is defined externally to DynSem. The specification
just records its signature. A typical use of native operators is the API for numeric operations.
For example, Figure 3 declares the native operators plusI for adding integers and str2int
for parsing strings as integer literals. From the perspective of the type system, native
operators are term constructors. From the perspective of reduction, a native operator comes
with an implementation that replaces its invocation with a term of the appropriate sort.

Sometimes we do want to define the semantics of an operation in DynSem, but we want
to abstract over a frequently occurring pattern. A meta-function, declared as a constructor
C: ts −→ t (with a long arrow), introduces an auxiliary term constructor in combination
with an arrow evaluating it to its result type. For example, Figure 4 declares the signature of
meta-functions allocate, write, and read, which abstract over operations on the store,
simplifying the definition of rules using the store.

3 Conciseness and Modularity

The previous section introduced the general form of DynSem reduction rules and the signatures
that declare the structure of terms and arrows. However, as one can observe in Figure 1,
full-fledged reduction rules can be rather verbose, requiring quite a bit of boilerplate code for
the reduction of subterms and the propagation of semantic components. Such verbosity is
bad since it hides the essence of a rule; which parts of the rule in Figure 1 are truly related
to the addition? Worse, the explicit propagation of semantic components is harmful to
modularity. When introducing a new feature to a language that requires a new semantic
component, all existing rules need to be adjusted to propagate the new semantic component.
It is common practice to reduce the verbosity of rules by means of informal conventions [14].
DynSem provides several features formalizing such conventions so that rules are unambiguous,
yet have can be defined concisely and modularly. These features can be separated in two
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Num(n) −→ str2int(n)

Ifz(0, e1, _) −→ e1

Ifz(n: Int, _, e2) −→ e2
where

n 6≡ 0

E ` Var(x) −→ E[x]

[] : List(Bind) b−→ {}

[Bind(x, v: V) | lb] b−→ {x 7→ v, E}
where

lb b−→ E

E ` Let(E_b, e) −→ v’
where

Env {E_b, E} ` e −→ v’

Seq(v1 : V, e2) −→ e2

Plus(NumV(i1), NumV(i2)) −→ plusI(i1, i2)

E ` f@Fun(_, _) −→ ClosV(f, E)

App(ClosV(Fun(x, e), E), v: V) −→ v’
where
Env {x 7→ v, E} ` e −→ v’

Box(e) −→ BoxV(allocate(e))

Unbox(BoxV(loc)) −→ read(loc)

SetBox(BoxV(loc), e) −→ write(loc, e)

allocate(v) −→ loc
where
fresh ⇒ loc, write(loc, v) −→ _

write(loc, v) :: S −→ v :: Sto {loc 7→ v, S}

read(loc) :: S −→ S[loc] :: S

Figure 6 DynSem reduction rules for a functional language with references (boxes). The meta-
functions allocate, write, and read define reusable abstractions over store operations that
are used in the definition of the rules for boxes.

categories: (1) coercions that allow implicit transformation from one sort into another, and
(2) implicit propagation of semantics components that allows the omission of those semantic
components that are not affected by a rule.

3.1 Implicit Coercions
Implicit Constructors. Including the terms of one sort in another sort requires the intro-
duction of an explicit constructor. For example, in order to use integers (sort Int) as values
(sort V), a constructor NumV: Int → V is required, which should be applied to wrap each
use of an integer as a value. In order to avoid such unnecessary constructor applications
we allow unary constructors to be declared as implicit. An implicit constructor C with
signature S1 →S2 defines a coercion between sort S1 and sort S2. That is, one can use a
term of sort S1 in a context where a term of sort S2 is expected. The constructor C will
then be automatically inserted to match the context. Therefore, since the NumV constructor
is declared as implicit in the signature presented in Figure 3, we can omit it when the
expected sort is known, such as in the first rule in Figure 6 for Num(n) where the right-hand
side is an Int while a V is expected according to the −→ arrow declaration. Coercion
expansion will introduce this implicit constructor, transforming the rule into

Num(n) −→ NumV(str2int(n))

Arrows as Coercions. In big-step operational semantics, most of the reductions rules have
a similar scheme. That is, for a given constructor, reduce its subterms to values using a
(recursive) invocation of the arrow and then combine these values to produce the final value
of the term. If the reductions of the sub-terms behave uniformly with respect to semantic
components, we can infer the sub-reduction by treating an arrow as declaration of an implicit
coercion. Implicit arrow coercions are made explicit by the introduction of reduction premises.
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If a term t of sort A appears in a position where sort B is expected, and if there is an arrow
from A to B, an additional premise reducing t to a variable of sort B will be introduced.
Conversely, if a pattern t of sort B is used in a position where a pattern of sort A is expected,
and there is an arrow from A to B, the pattern is replaced with a fresh meta-variable, which is
subsequently reduced in a new reduction premise to pattern t. For example making coercions
explicit in the Ifz rules of Figure 6 leads to the following rules:

rules
Ifz(e0, e1, _) −→ v1
where

e0 −→ NumV(0),
e1 −→ v1

Ifz(e0, _, e2) −→ v1
where
e0 −→ NumV(n),
n 6≡ 0,
e2 −→ v1

In order to force coercion applications, one can also annotate variables in a pattern with
their required type (e.g. the n : Int pattern in the second Ifz rule) enforcing a coercion
from this type to the expected one to be introduced.

Variable Schemes. Big-step rules for operational semantics often require the use of several
semantics components. In such a case, the use of meta-variables to represent the different
semantics components may lead to an ambiguity about which semantics component is
represented by a particular variable. Therefore, the name of a semantic component is
required to appear before the term that represents its value, as in Figure 1. DynSem supports
writing semantic components using just a variable, through a declaration of variable schemes.
Given a semantics components SC, a variable scheme declaration such as S : SC reserves
the name S and several extensions (e.g. Sn where n is an integer or S_x where x is any
identifier extension) to be used as meta-variables for the semantic component SC. These
reserved variables do not require the explicit semantic component name annotation as shown
in the variable rule in Figure 6 where E is inferred to be the semantic component Env given
the variable declaration in Figure 5.

3.2 Implicit Semantic Components
While the rule for addition in Figure 1 explicitly passes the environment and store to its
premises, the rules in Figure 6 do not mention semantic components or only selectively.
DynSem uses implicit propagation of semantic components, as introduced in I-MSOS [16],
to support the ommission of semantic components in rules that are not affected them. For
example, the rule in Figure 1 can be rewritten to the Plus rule in Figure 6. Explication of
coercions and semantic components automatically transforms this rule to the one in Figure
1. In addition to being more concise, this rule is also more modular, since it can be used in
combination with language constructs that require different semantic components.

Semantic Component Dependency. In order to ensure consistency of the reduction rela-
tions, all reduction rules for a given arrow have to be extended with the same set of read-only
and read-write semantic components. Moreover a particular semantic component can not
appear both as a read-only and read-write component. Therefore, before explicating the
semantic components in all rules, we first infer which semantic components are implicitly
used by each arrow in the specification.

The semantic components used by an arrow do not only depend on the rules defining the
arrow but also on the semantic components used by other arrows on which it depends. Let

r−→ denote a particular reduction arrow, the set of semantic components that have to appear
in the expansion of the reduction rules defining r−→ has to satisfy the following properties:
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Env E_0 ` [Bind(x, e_0) | lb] :: Sto S_0 b−→ {x 7→ v, E} :: Sto S_2
where
Env E_0 ` e_0 :: Sto S_0 −→ v :: Sto S_1,
Env E_0 ` lb :: Sto S_1 b−→ E :: Sto S_2

E ` Let(b_0, e) :: Sto S_0 −→ v’ :: Sto S_2
where
Env E_0 ` b_0 :: Sto S_0 b−→ E_b :: Sto S_1,
Env {E_b, E} ` e :: Sto S_1 −→ v’ :: Sto S_2

Figure 7 Explicated rules for Bind and Let.

All the semantic components appearing explicitly in one of the occurrences of arrow r−→,
either in the premise or conclusion of a rule, should appear in its expansion.
A semantic component appearing in the expansion of an arrow r−→, which is used in the
premise of a rule defining arrow r−→, should appear in the expansion of r−→.

Explication of Semantic Components. Given these dependencies, we define an explication
transformation on reduction rules, which make the use of semantic components explicit.
Assume that for every reduction relation r−→ we know its corresponding set of read-only Rr
and read-write Wr semantic components according to the dependencies introduced above.
Then, for each reduction rule, we apply the following transformations:

Extend the set of read-only and read-write semantic components of the left-hand side of
the conclusion with free variables for each of the components in Rr and Wr

Extend the set of read-only semantic components of each reduction premise using the
read-only semantic components of the conclusion (the second dependency rule ensures
that there is one) as required by its dependencies.
Thread the read-write semantic components through the premises, as follows:

Initialize the context of read-write semantic components Sc with the read-write semantic
components of the left-hand side of the conclusion
For each reduction premise:
• Extend the semantic components on the left-hand side as required by the dependen-
cies of the arrow of the premise

• Use fresh variables to extend the semantic components on the right-hand side
• Update the context Sc by replacing the semantic components used in the left-hand
side with the corresponding fresh variables used in the right-hand side.

Extend the semantic components on the right-hand side of the conclusion using the
context returned by premises processing.

Coercion explication followed by the semantic components explication turns the Plus
rule from Figure 6 in the rule of Figure 1. It also introduces the Env and Sto semantic
components in the binder reduction rules b−→ (through the implicit use of the −→ arrow
in v : V) leading to the explicated rules for binder lists and Let in Figure 7. Note that,
unlike with usual inductive rules, due to the threading of semantics components, the order of
the premises matters when using implicit semantics components.
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4 Interpreter generation

Our objective is to compile DynSem specifications to efficient interpreters. Their performance
should be acceptable and they must lend themselves to later optimizations. To achieve this
we translate a DynSem specification into an interpreter in Java. ASTs of object language
programs are mirrored to instantiations of the generated classes which yields executable ASTs.
Programs in the object language are then directly executable after parsing. Executable ASTs
are simpler to reason about than bytecode interpreters, since they preserve the program
structure and since they lend themselves to local program optimizations. The runtime
behavior of the generated executable ASTs resembles hand-written Java code which allows
the JVM’s JIT to recognize common patterns and optimize the running program.

In a nutshell, the generator maps signatures of the embedded language to classes in
Java, arrow declarations to method stubs and general premisses to method bodies. Classes
are generated into a class hierarchy dictated by the relation between sorts and between
constructors and sorts. Reduction rule alternatives become callable in ancestor classes.

Signatures. A sort definition translates to an abstract Java class. Sorts related by a subtype
relationship translate to Java classes in a subtype relation. A sort definition also derives a
specialized Java implementation for a list of that specific sort.

sort S =⇒
{

abstract class AS extends AbstractNode { . . . }

class ListS implements List〈AS〉 { . . . }

All generated list classes implement the List〈T 〉 interface and generated sort classes
extend the framework-provided AbstractNode class.

A constructor C of arity n and sort S derives a Java class Cn which extends the class
AS . Classes derived from non-nullary constructors form roots for program subtrees. The
generation scheme is

C : S1 ∗ ... ∗ Sn → St =⇒ class Cn extends ASt{AS1 _1; ...;ASn _n; }

An explicated arrow declaration for rel−→ produces a method declaration in the class corres-
ponding to the arrow’s source sort. The return type RAT

of the method is a record of the
target type and the read-write semantic component types:

R1 · ... ·Rnr ` (S :: S1 · ... · Sns) rel−→ (T :: S1 · ... · Sns)

=⇒
{

public RAT
rel(AR1 , ..., ARnr

, AS1 , ..., ASnr
){ def(S, rel) } in target(S)

class RAT
{AT _0;AS1 _1; ...;ASnr

_n; }

The class containing the method is given by the conclusion’s source pattern:

target(t) =


class Cn if t = C(x1, ..., xn)
class ListS if t : List〈S〉
abstract class AS if t : S, otherwise

The generated method calls its ancestor or raises an exception if the containing class
does not have an ancestor:

def(s, rel) =


super.rel(...) if s = C(x0, ..., xn)
super.rel(...) if s : T, T 6= List〈T ′〉 and ∃T ′′, T ≤ T ′′
raise exception otherwise
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term construction Cn(t1, ..., tn) =⇒ new Cn(e1, ..., en)
list construction [t1|t2] (: List〈T 〉) =⇒ new ListT (e1, e2)

empty map {} =⇒ new PersistentTreeMap()
map extension {t1 7→ t2, t3} =⇒ e3.plus(e1, e2)

map access t1[t2] =⇒ e1.get(e2)
assignment t⇒ v (: T ) =⇒ AT v = e

pattern match t⇒ C(v1, ..., vn) =⇒ if (e instanceof Cn) { . . . }

equality check t1 = t2 =⇒ if (e1.equals(e2)) { . . . }

relation t∗rs ` ts :: tsc
rel−→ v :: vtc (: T ) =⇒ RAT

_v = es.rel(e∗rs, e
∗
sc)

Figure 8 Correspondence of DynSem premises in Java.

Reduction rules. A pre-processing step merges all rules defining reductions for the same
constructor (e.g. the two rules for Ifz in Figure 6), common premises are factorized and an
or combinator (∨) is introduced to combine the different alternatives. The merging algorithm
is similar to left-factoring as described by Pettersson [19]. A difference is that premise
equivalence in DynSem is decided modulo alpha-equivalence. Non-trivial pattern matching
on the right-hand side of reduction premises is factored out using a pattern matching premise
t⇒p. When p is not a variable, we apply the following transformation on the premise:

Rs ` t :: Ws −→ p :: Ws’ =⇒ Rs ` t :: Ws −→ x :: Ws’, x ⇒ p

with x a fresh variable. We use similar rules for non-trivial patterns in Ws’. A merged
reduction rule has its conclusion in normal form and a single general premise. It derives a
method into the class described above. The signature of the generated method respects the
signature derived from the arrow declaration. The general premise derives the method body.
Figure 8 gives the correspondence of DynSem premises to Java statements and expressions.
The individual premises are combined either as a sequence or as alternatives. Premises that
can fail, such as pattern matches, are always guarded. If at evaluation a guard fails, its
alternative premise is evaluated. A successful general premise returns from the method. For
each reduction rule rs ` s :: sc rel−→ t :: tc where gp the weaving of Java statements is given
by the function gen(gp · sup(s, rel), t):

gen((p1 · p2) ∨ p3, t) := if geng(p1) then gens(p1) ; gen(p2, t)
else gen(p3, t)

gen(p1 · p2, t) := gen(p1, t) ; gen(p2, t)
gen(ε, t) := return t;

gen(sup(s, rel), t) := def(s, rel)

where geng(p) and gens(p) generate Java code according to Figure 8 for the guard and the
successful case of premise p, respectively.

5 Related work

Definition of Standard ML. The implicit propagation of semantic components in DynSem
is an implementation of the notation used in the The Definition of Standard ML [14] to
define the dynamic semantics for a core of Standard ML. This core of Standard ML is defined,
just like definitions in DynSem, in the style of natural semantics [10]. Although inspired by
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I-MSOS [16], explication in DynSem is closer to the definition used by Milner et al. which
defines an implicit order of premises and is applied to big-step style semantics. Following
I-MSOS, rules in DynSem may also omit the unused read-only semantic components from
rules, which are left implicit by Milner et al. The Definition of Standard ML uses a single
reduction arrow symbol.

I-MSOS, MSOS & interpreter generation. Modular SOS (MSOS) [15] introduces relation
arrows that have record values as arrow labels. This record value carries auxiliary entities to
be propagated together in the label of the arrow. Labels can be composed but have to be
explicitly mentioned on all uses of the relation arrow, regardless of whether the rule accesses
the contents of the label or not.

I-MSOS [16], which is the inspiration for DynSem, improves on the modularity and
conciseness of MSOS. It introduces the distinction between auxiliary entities (semantic
components) that implicitly propagate either only downwards or are threaded through the
premises of rules. Each I-MSOS specification has a translation to an MSOS specification by
aggregating the semantic components on the arrow label. I-MSOS also supports multiple
relation arrows, but in contrast to DynSem, using multiple arrows in the same rule propagates
all of the semantic components to all of the arrows used together. As a special case of this
difference DynSem also prevents propagation of auxiliary entities for ground terms.

I-MSOS and MSOS can derive specialized interpreters [1] in Prolog. In the naive generation
strategy each reduction rule translates to a Prolog clause which calls a stepping predicate
which searches for a next reduction in the program. The number of step inferences harms
performance the interpreter. A refocusing strategy, following Danvy et al. [18], rewrites an
MSOS specification to a specification in which each rule attempts to transitively completely
evaluate intermediate values. This heuristic, speculating on locality of evaluation, significantly
reduces the number of inferences and improves execution performance. Special rules are
introduced to propagate abruptly terminated computations. Specialization of interpreters
from MSOS involves left-factoring the rules as described by Pettersson [19]. Left-factoring
is similar to the merging of rules in DynSem. While left-factoring eliminates only identical
premises, merging in DynSem also eliminates mutually exclusive premises and premises
which can be unified modulo alpha-renaming. The motivation for left-factoring is to reduce
backtracking, merging additionally has the goal of grouping premises per constructor.

K Semantic Framework [20] is a mature language and toolchain for specification of
dynamic semantics of programming languages. K has been applied to production-size
languages such as C [7] and Java [4]. Semantics in K are given as rewrite rules. The
homologue of semantic components in K are configurations. These consist of (nested) cells
used to store the interpreted program and additional data structures. Configurations are
automatically inherited into rules and rewriting takes place directly inside the cells of the
configuration. Rules that do not mention the configuration automatically perform the rewrite
inside the K (program) cell and resemble rewrite rules. Rules that explicitly mention the
configuration resemble context-sensitive reduction rules. Cells in the configuration that are
not accessed are left unchanged and implicitly propagated. Cells are only propagated from
input to output since K rules do not have premises.

K requires that the syntax definition of the object language be embedded in the K
specification. Annotations on the syntax definition can define the evaluation order or
strictness requirements. For example a strict(1) annotation on the conjunction expression
states that the left subexpression has to be evaluated first and completely. Once this syntax
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is defined in K one can use a mix of object language concrete syntax and K syntax to match
and build terms. Mixing of concrete object language syntax and DynSem can be obtained by
assimilation following [21]. K specifications derive textual representations of the rules and
graphical layouts for the configurations and cells to aid in documenting the object language.
K specifications are compiled to rewriting logic in Maude [6]. Our previous micro-benchmarks
[22] revealed that on big-step style specifications of the same language in DynSem and K,
interpreters derived from DynSem are much faster than those derived from K.

PLT Redex [8] is an executable functional domain-specific language for semantic models.
In Redex the semantics of a language is defined using context-sensitive reduction relations
and meta-functions. Redex comes with a rich standard library of functions that can be
used by semantic models. Its toolchain has facilities targeted at semantics prototyping
such as randomized testing in the style of QuickCheck [5] and step-wise visualization of
reductions [12]. Semantics can use either explicit substitution or environments and states. If
environments and stores are used they have to be explicitly mentioned in every reduction
relation. Redex supports ellipsis pattern placement for list matching and redex matching
in program trees using the in-hole pattern, features that are not supported in DynSem.
Readability of reduction relations in Redex is reduced by Racket’s syntax [9] and by the need
to explicitly mention semantic components. Programs are run by interpreting their reduction
semantics in Redex. Racket’s JIT compiler improves the runtime of interpreted programs
but performance is still hampered by the redex lookup overhead and by non-deterministic
rules. Performance of the interpreter is not an explicit goal of PLT Redex according to the
published papers.

Implicit parameters in Scala exhibit similarities to semantic components in DynSem.
Function parameters that are declared as implicit in the function definition may be omitted
from the function application. Propagation of the implicit parameters is resolved by the
compiler. The compiler prioritizes the inherited implicit parameters over the locally defined
instances of the same type. Implicit parameters can be used to emulate the implicit read-only
semantic components of DynSem but special care has to be taken to the mutability of the
objects used. Persistent semantic components cannot be emulated with implicit parameters.
While implicit parameters can be omitted from function applications they cannot be omitted
from function definitions.

Monad transformers [13] allow definition of aggregated data structures with implicit
packing and unpacking of components. The monad abstraction allows interpreters to be
modularly composed. Examples are the state and IO monads. Monad transformers deliver
implicit propagation similar to that of read-write semantic components in DynSem. The
infectious propagation of the IO monad in Haskell resembles the upwards propagation of the
semantic components in DynSem. In Haskell, like in the Scala case, the type signature of
the function has to explicitly declare the monad as a function parameter. Both Haskell and
Scala programs are less suitable for verification than more formal specification languages.

XSemantics [3] (the successor of Xtypes [2]) is a DSL for the specification of type systems
for languages written in Xtext [23]. XSemantics is also applicable to implementation of
interpreters. Dynamic semantics are specified in a syntax similar to deduction rules but with
the rule conclusion preceding the rule premises. Multiple relation symbols can be declared
and relation symbols can be overloaded. Only a single, mutable environment, can be used in
a rule and there is no implicit propagation of the environment into the premises.
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6 Future work

DynSem provides a good starting point for the further exploration of the integration of
semantics engineering and language engineering. We plan to further develop the DynSem
language and its accompanying toolset, and to investigate opportunities for abstraction in
specifications. In particular, we plan to investigate the relation between static and dynamic
binding of names in programs building on our foundational work on name resolution [17].

A goal for the generated interpreters is to obtain high performance execution engines.
Techniques such as meta-tracing and dynamic compilation are proving successful for the
optimization of custom built interpreters. We want to investigate whether such techniques
can be generically applicable at the level of interpreter generation. Two other research
avenues are to grow DynSem to cover a wide range of semantic styles and to automatically
check that DynSem rules are type preserving.
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