
Science of Computer Programming 97 (2015) 11–16
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Understanding software through linguistic abstraction

Eelco Visser

Software Engineering Research Group, Department of Software and Computer Technology, Delft University of Technology, The Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 October 2013
Accepted 3 December 2013
Available online 31 December 2013

Keywords:
Linguistic abstraction
Programming languages
Domain-specific languages
Software understanding

In this essay, I argue that linguistic abstraction should be used systematically as a tool to
capture our emerging understanding of domains of computation. Moreover, to enable that
systematic application, we need to capture our understanding of the domain of linguistic
abstraction itself in higher-level meta languages. The argument is illustrated with examples
from the SDF, Stratego, Spoofax, and WebDSL projects in which I explore these ideas.
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1. Introduction

Software systems are the engines of modern information society. Our ability to cope with the increasing complexity
of software systems is limited by the programming languages we use to build them. Bridging the gap between domain
concepts and the implementation of these concepts in a programming language is one of the core challenges of software
engineering. Modern programming languages have considerably reduced this gap, but often still require low-level program-
matic encodings of domain concepts. Or as Alan Perlis formulated it in one of his famous epigrams [1]: “A programming
language is low level when its programs require attention to the irrelevant”. A fixed set of (Turing Complete) programming
constructs is sufficient to express all possible computations, but at the expense of considerable encoding that obfuscates
the concepts under consideration. This essay argues that linguistic abstraction should be used systematically as a tool to
capture our emerging understanding of domains of computation. Moreover, to enable that systematic application, we need
to capture our understanding of the domain of linguistic abstraction itself in higher-level meta languages. The argument is
illustrated with examples from the SDF, Stratego, Spoofax, and WebDSL projects in which I explore these ideas. A thorough
investigation of the literature on this topic is beyond the scope of this short essay.

2. From design patterns to linguistic abstractions

A design pattern describes an approach (or a family of approaches) to solve a reoccurring problem in software devel-
opment. A design pattern is a programming recipe that is applied manually by a programmer. When a design pattern is
understood well, we can recognize formalizable regularity in the problem pattern and its encodings. A linguistic abstraction
can then be used to formalize the design pattern in a language construct. To understand this process, let’s examine the
classical example of procedural abstraction.
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label P
pop r3
pop r2
pop r1
// instructions for P
jump r3 // return

push v1
push v2
push L
goto P
label L

Fig. 1. Encoding a procedure in an imaginary assembly language with labels, stack operations, and jumps. The procedure definition (top) pops arguments
from the stack and stores the values in registers. The procedure call (bottom) pushes arguments and the return address on the stack and jumps to the
procedure code.

2.1. Example: procedural abstraction

A procedure in assembly programming amounts to a design pattern for organizing reuse of code (Fig. 1). In its simplest
form, a sequence of instructions that is used at multiple places in the program is given a label. When jumping to the label
the address of the next instruction after the call is stored, so that the procedure knows where to continue after completion.
Passing arguments to a procedure requires storing the arguments on the stack and/or in registers. The particular protocol
for doing this depends on the definition of the procedure. In principle, each procedure may require a different protocol.
A calling convention standardizes the protocol for procedure calls in programs. However, a calling convention is a convention
and is not enforced; adherence requires programmer discipline. This means that it is possible to deviate and make errors.
Detecting such errors typically requires debugging rather than static analysis. Furthermore, calling conventions for different
platforms may differ, for example, in the order in which arguments are pushed on the stack. Such differences reduce the
portability of code.

Procedural abstraction is a linguistic abstraction that formalizes the design pattern of procedure definitions and calls.
A procedure is introduced with a procedure definition that is syntactically recognizable as such:

def P(x, y) {
// definition of P using parameters x and y
return; // return control to caller

}

The definition introduces the name of the procedure and the names (and possibly types) of the arguments. A procedure
call P(e1, e2) uses function notation known from mathematics to invoke a function, passing its arguments. Thus, the
semantic concept is reified in syntax, allowing developers to directly express design intent (‘language shapes thought’).

We might now consider procedural abstraction as providing syntactic sugar for a particular implementation of procedures
with jump and stack instructions. That particular implementation defines the semantics of procedures. However, we can go
further and define a more abstract semantics that captures the essence of procedures; the fact that they name a parameter-
ized sequence of instructions to which control is passed. Given that view, we can define mappings from the same notation
to multiple alternative implementation models. In particular, we can make translations to the instruction sets and calling
conventions of other platforms than the one that we originally developed the abstraction for, thus achieving portability of
programs. Since these translations are automated we can ensure that the generated code is correct by construction, i.e. fol-
lows the rules of the design pattern. Alternatively, we can define an interpreter for programs, instead of a translation to
a sequence of instructions.

In addition to varying implementation models, the abstraction makes it much easier to perform all sorts of static anal-
yses on the program. Instead of having to identify the pieces of code that make up procedure definitions and calls, that
information is now explicit at the syntactic level. For example, we can check that procedure calls are consistent in arity and
type of arguments with procedure definitions, ruling out a large source of errors with a simple static analysis, effectively
enforcing consistent application of the design pattern. Moreover, errors can be reported in the terminology of the abstraction
(‘procedure call has too few parameters’). In reasoning about the behavior of procedures in such analyses we only need to
consider their abstract semantics.

A linguistic abstraction such as procedural abstraction captures our understanding of a concept in software. Over time the
understanding of the abstraction in terms of the original implementation model erodes. New programmers learn to program
with procedures without ever learning the underlying implementation scheme (or the mathematical semantics for that
matter). The concept is no longer a convenience, but a first-class concept in thinking about software construction.
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2.2. Generalization

The process from design pattern to linguistic abstraction has occurred time and again in the history of programming
languages. We have linguistic abstractions for structured control-flow (if–then–else vs goto), automatic memory management
(garbage collection vs manual alloc/free), data abstraction (abstract data types and objects), and modules (inheritance, traits,
mixins). Of course, these abstractions are well known to any users of modern programming languages. They are so ingrained
and internalized in the conceptual framework of computer science that they are taken for granted. That leads to the percep-
tion that there is a mostly fixed and final set of abstractions for programming that is sufficient for all eternity. Underlying
this is a paradigm of simplicity that is driven by reducing the complexity of compilers rather than the programs that they
compile. However, many areas of software development are in need of linguistic abstraction. For example, data persistence,
data services, concurrency, distribution, access control, data invariants, and workflow currently require programmatic encod-
ings in general purpose programming languages. As an example, let’s consider an example of linguistic abstraction in web
programming.

2.3. Example: web programming

A typical three-tier web program is a distributed software system with parts running in the browser, the web server,
and the database. Each of these tiers runs different programming languages. The browser is programmed with HTML, CSS,
and JavaScript; the server is programmed with a general purpose language such as Java or Ruby; and the database is
programmed with a query language such as SQL. This entails that a web program is really a jumble of programs in these
different languages. As a result, little static checking is or can be done of the consistency between fragments in different
languages and failures are detected late in the development life cycle [2]. The WebDSL language addresses this problem
by linguistically integrating DSLs for different concerns of web programming [3]. The language integrates sub-languages
for persistent data models, user interface templates [4], access control policies [5], and data validation [6]. The integration
enables early detection of failures, in particular cross-concern safety violations [2]. In addition to integration of languages,
WebDSL introduces linguistic abstractions that formalize design patterns in the domain. Let’s consider two examples, page
navigation and the model-view pattern.

Page navigation. Users navigate between the pages of a web application through links. One expects that links to internal
pages are correct, i.e. that they point to defined pages, passing valid parameters. In regular web programming approaches
this is hard to check since page addresses are represented as string encoded URLs and processed using string manipulation.
The programming languages in which these encodings are defined has no notion of pages and links, and cannot check for
consistency as part of its regular static checking. An additional static analysis would have a hard time identifying the parts
of programs concerned with URLs.

In a WebDSL program the consistency between page definitions and links can be checked easily, since the concept is
captured in a linguistic abstraction. A page definition such as

page profile(user: User) { /* markup for page content */ }

introduces a page with a name and formal parameters, which can be arbitrary (persistent) object types. A page definition
produces the code for routing, i.e. decoding an incoming page request URL, fetching objects from the database to instantiate
the page parameters, and composing the response to the request based on the page body.

As page definitions in WebDSL are similar to function definitions, links are similar to function calls. A navigate clause
such as

navigate profile(user) { output(user.name) }

generates a link to a page, passing it arguments of the appropriate type. (The argument between curly braces produces the
anchor for the link.) By formalizing the notion of page definitions and links, their consistency can be checked at compile-
time. That is, the compiler can check that the page in a link is defined and that the arguments passed to the page are of
the right type. The implementation takes care of generating a correct URL to the page, with appropriate keys to represent
the argument objects.

Model-view. Modifying content in a web application is typically organized using the model-view–controller design pattern.
An internal data structure (model) is rendered as an HTML form (view) populating input elements with data. On submission
of the form, the form request is processed by a function on the server (controller) that decodes the form request, validates
data against data invariants, binds values to the data model, and persists the data in the database. When encountering
validation errors the controller re-renders the view with error messages. This design pattern is typically re-implemented for
each form.

WebDSL avoids the definition of separate controllers by automating the page life cycle. A form in a page such as in Fig. 2
takes care of rendering the form in HTML. However, in addition to generating the view, a page definition doubles as con-
troller. On a POST request, the page definition is interpreted to perform all the operations normally performed by a separate
controller. The changed data in the form request are bound to the corresponding l-values (e.g. user.name) in the form.
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page editprofile(user: User) {
action save() { return profile(user); }
form{
input(user.name)
input(user.description)
submit save() { "Save" }

}
}

Fig. 2. Model-view pattern in WebDSL.

The data are validated against the data invariants for the data types. In case of validation conflicts, the page is re-rendered
with embedded error messages. If validation succeeds, the changed objects are persisted in the database. In general, what
we see here is that a linguistic abstraction can be interpreted for multiple purposes, unlike a programmatic encoding that
defines an algorithm serving one specific purpose.

3. Meta linguistic abstraction

The examples above illustrate how linguistic abstractions formalize our understanding of concepts in software, thus
allowing us to automate consistency checking, hide irrelevant implementation details, and reuse programs for multiple
purposes. Using linguistic abstraction as a standard tool in the battle with software complexity requires that we can apply
it effectively. A software language is a complex software system in its own right — consisting of syntactic and semantic
analyzers, a translator or interpreter, and an interactive development environment (IDE) — and can take significant effort to
design and implement. Language workbenches are language development tools aiming to considerably lower the threshold
for software engineers to develop DSLs to automate software tasks [7]. The field was pioneered in the 1980s with projects
such as the Synthesizer Generator [8] and the ASF + SDF MetaEnvironment [9]. Examples of modern language workbenches
include MPS [10], Xtext [11], and Rascal [12]. My group at TU Delft has developed the Spoofax Language Workbench [13]
based on the SDF and Stratego meta languages.

Despite advances in the field, many aspects of language definition still require programmatic encodings of language
designs. As a result, language definitions are often only usable for a single purpose and it is hard to check consistency
properties of language definitions. It is an important research challenge for the field of software language engineering to
better understand the domain of linguistic abstraction itself, and capture that understanding in high-level linguistic abstrac-
tions that allow language designers to create new linguistic abstractions with much less effort. I examine two examples of
high-level linguistic abstraction for language definition.

3.1. Example: syntax definition

The syntax of a language concerns the form of its programs. The principal operation associated with syntax is parsing,
the recognition of syntactically well-formed program texts and turning those into an abstract syntax tree structure for
further processing. It is not uncommon for language engineers to encode the syntax of a language in a hand-written parser.
However, many other operations and data structures depend directly on syntax. The schema for abstract syntax trees is
directly related to the structure of programs. Pretty-printing, the formatting of an abstract syntax tree as text, is the inverse
of parsing. Syntax-aware editors provide editor services such as syntax highlighting, parse error recovery, syntactic code
completion, and outline views that are based on aspects of syntax. All these operations need to be implemented in addition
to a hand-written parser.

Declarative syntax definition supported by generalized parsing abstracts from the details of parser implementations [14]
and allows alternative interpretations in addition to a parser to be derived automatically. The SDF syntax definition for-
malism provides such an approach. Its first incarnation integrated lexical and context-free syntax based on GLR parsing
in combination with a sophisticated lexical analysis scheme [15]. Its second incarnation completed the integration through
Scannerless GLR (SGLR) parsing [16]. The example in Fig. 3 illustrates the third generation, SDF3 [17]. The production defines
the syntax of function definitions with a name, list of arguments, optional return type, and a list of statements as body. As
with previous versions of SDF, SDF3 definitions generate an SGLR parser. In addition, the formalism now explicitly defines
the derivation of AST schemas (the Function is the constructor of the production). Furthermore, pretty-print rules and
syntactic completion schemas can be derived from the template aspect of the production.

While syntax definition has been a successful example of declarative language definition, most other concerns of language
definition require programmatic encodings. Recently, we have made progress in developing high-level linguistic abstractions
for the specification of name binding rules.

3.2. Example: name binding

Name resolution is a crucial static analysis performed after parsing for identifying which definitions belong to which uses
of names in a program. The analysis is typically defined as an algorithm, programmatically encoding the conceptual name
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Property.Function = <
function <ID> (<Arg*; separator=",">) <ReturnType?> {
<Stat*>

}
>

Function : ID * List(Arg) * Option(ReturnType) * List(Stat) -> Property

Fig. 3. SDF3 production (top) and derived signature for AST constructor (bottom).

Function(f, _, _, _) :
defines Function f
scopes Variable

Param(x, _) :
defines Variable x

Var(x) :
refers to Variable x

Call(f, _) :
refers to Function f

Fig. 4. NaBL name binding rules.

binding and scope rules of a language. While definitions with attribute grammars may abstract from some programmatic
aspects, such as explicit scheduling, they still constitute an encoding of an algorithm. The NaBL name binding language [18]
that we have recently developed aims to provide direct, explicit expression of name binding and scoping rules using the
concepts of the domain. For example, consider the rules in Fig. 4 that define name binding for functions and variables. The
rules define binding clauses that apply to abstract syntax tree patterns (such as Var(x)). The first two rules introduce
definitions of names, for function definitions and function parameters, respectively. The last two rules define references of
names, i.e. occurrences of names that refer to definitions with the same name. Finally, the rule for Function declares
a function as a scope for variables. These rules do not define a recursive traversal over abstract syntax trees, or explicitly
manipulate symbol tables. Instead, a name resolution algorithm that performs a traversal and stores binding information in
a symbol table can be automatically derived from these rules. Moreover, the derived algorithm can be made incremental,
such that the effort of reanalysis after a change during development is proportional to the size of the change [19].

3.3. Understanding other meta linguistic concerns

Other language definition concerns such as type systems, dynamic semantics, and transformation also require better
linguistic abstractions such that language designers can focus on design rather than implementation. By integrating verifi-
cation techniques from semantics engineering, it will then be possible to automatically detect inconsistencies in language
definitions.

4. The future of linguistic abstraction

With the increasing expressivity of meta languages and the powerful implementations produced by language work-
benches, linguistic abstraction can become a professional tool routinely used by meta software engineers to develop an
increasingly rich body of knowledge capturing our understanding of software.
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