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Abstract
It is common practice to bootstrap compilers of programming
languages. By using the compiled language to implement
the compiler, compiler developers can code in their own
high-level language and gain a large-scale test case. In this
paper, we investigate bootstrapping of compiler-compilers as
they occur in language workbenches. Language workbenches
support the development of compilers through the application
of multiple collaborating domain-specific meta-languages
for defining a language’s syntax, analysis, code generation,
and editor support. We analyze the bootstrapping problem
of language workbenches in detail, propose a method for
sound bootstrapping based on fixpoint compilation, and
show how to conduct breaking meta-language changes in
a bootstrapped language workbench. We have applied sound
bootstrapping to the Spoofax language workbench and report
on our experience.

Categories and Subject Descriptors D.3.4 [Compilers]

Keywords bootstrapping, domain-specific, meta-language,
language workbench

1. Introduction
A bootstrapped compiler can compile its own source code,
because the compiler is written in the compiled language
itself. Such bootstrapping yields four main advantages:

1. A bootstrapped compiler can be written in the compiled
high-level language,

2. it provides a large-scale test case for detecting defects in
the compiler and the compiled language,

3. it shows that the language’s coverage is sufficient to
implement itself, and

4. compiler improvements such as better static analysis or the
generation of faster code applies to all compiled programs,
including the compiler itself.

Compiler bootstrapping is common practice nowadays. For
example, the GCC compiler for the C language is a boot-
strapped compiler; its source code is written in C and it
can compile itself. More generally for a language L, a boot-
strapped compiler Lc should apply to its own definition Ld
such that Ld ∈ L and Lc(Ld) = Lc.

Language workbenches [9] are compiler-compilers that
provide high-level meta-languages for defining domain-
specific languages (DSLs) and their compilers. Thus, users
of a language workbench implement the compiler Lc of lan-
guage L not in L but in a high-level meta-language M such
that Ld ∈ M and Mc(Ld) = Lc. Thus, bootstrapping of Lc is
no longer required, which is good since many DSLs have
limited expressiveness and are often ill-suited for compiler
development.

What we desire instead is bootstrapping of a language
workbench’s compiler-compiler Mc. We want to use our meta-
languages for implementing our meta-language compilers,
thus inheriting the benefits of bootstrapping stated above:
high-level meta-language implementation, large-scale test
case, meta-language coverage, and improvement dissemina-
tion. In short, bootstrapping of language workbenches sup-
ports meta-language development. However, bootstrapping
of language workbenches also entails three novel challenges:

• Most language workbenches provide separate meta-
languages M1..n for describing the different language
aspects such as syntax, analysis, code generation, and edi-
tor support. Thus, to build the defintion of any one meta-
language compiler Mid, multiple meta-language compilers
M1..nc are necessary such that M1..nc (Mid) = Mic. This entails
intricate dependencies that sound language-workbench
bootstrapping needs to handle.

• Most language workbenches provide an integrated de-
velopment environment (IDE). Typically, language work-
benches generate or instantiate this IDE based on the
definition of the meta-languages. In this setup, the meta-
language developer needs to restart the IDE whenever the
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definition of a meta-language is changed. However, to sup-
port bootstrapping, the definition of meta-language com-
pilers should be available within the IDE and no restart
should be required to generate and load the new boot-
strapped meta-language compilers [18]. Importantly, since
meta-language changes can be defective, it also needs to
be possible to rollback to an older meta-language version
if bootstrapping fails.

• Since meta-languages in language workbenches depend
on one another, it can become difficult to implement break-
ing changes that require the simultaneous modification of
a meta-language and existing client code. For example, re-
naming a keyword in one meta-language can require mod-
ifications in the compilers of the other meta-languages.
To preserve changeability, we need to support implement-
ing such breaking changes in a bootstrapped language
workbench.

We present a solution to these challenges based on versioning
and fixpoint bootstrapping of meta-language compilers. That
is, we iteratively self-apply meta-language compilers to
derive new versions until no change occurs. For this to work,
we identified properties that meta-language compilers need to
satisfy: explicit cross-language dependencies, deterministic
compilation, and comparability of compiler binaries. To
support meta-language engineers, we describe how to build
interactive environments on top of fixpoint bootstrapping.
Finally, we discuss how to implement and bootstrap breaking
changes in the context of fixpoint bootstrapping.

To confirm the validity of our approach, we have imple-
mented fixpoint bootstrapping for the Spoofax language work-
bench [14]. We use our implementation to successfully boot-
strap eight meta-languages. We present our experience with
seven changes to the meta-languages. We describe how we
implemented the changes, how bootstrapping helped us to
detect defects, and how we handled breaking changes.

We are the first to describe a method for bootstrapping the
meta-languages of a language workbench. In summary, we
make the following contributions:

• We present a detailed problem analysis and requirements
for language-workbench bootstrapping (Section 2).

• We describe a sound bootstrapping method based on
fixpoint meta-language compilation (Section 3).

• We explain how to build bootstrapping-aware interactive
environments (Section 4).

• We investigate support for implementing breaking changes
in a bootstrapped language workbench (Section 5).

• We validate our approach by realizing it in Spoofax and
by investigating seven bootstrapping changes (Section 6).

2. Problem Analysis
To get a better understanding of bootstrapping in the con-
text of language workbenches, we analyze the problem of

bootstrapping in more detail. This problem analysis will help
us answer why we need bootstrapping in the first place, and
what is required to do bootstrapping in the context of lan-
guage workbenches.

2.1 Bootstrapping Example
First, we need a more realistic example that shows the
complexities of bootstrapping language workbenches. As
an example, we use the SDF and Stratego meta-languages
from the Spoofax language workbench. SDF [28] is a meta-
language for specifying syntax of a language. Stratego [4] is a
meta-language for specifying term transformations. SDF and
Stratego are bootstrapped by self specification and mutual
specification. That is, SDF’s syntax is specified in SDF, and
its transformations in Stratego. Stratego’s syntax is specified
in SDF, and its transformations in Stratego.

SDF also contains several generators. SDF contains a
pretty-printer generator PP-gen that generates a pretty-printer
based on the layout and concrete syntax in a syntax specifi-
cation [30]. A pretty-printer (sometimes called an unparser)
is the inverse of a parser. It takes a parsed abstract syntax
tree (AST) and pretty-prints it back to a string. The gener-
ated pretty-printer is a Stratego program that performs this
function. Besides generating a pretty-printer, SDF contains a
signature generator Sig-gen that generates signatures for the
nodes occurring in the AST. Since these signatures serve as
a basis for AST transformations in Stratego, SDF describes
these signatures in Stratego syntax and pretty-prints them
using the generated Stratego pretty-printer.

Overall, our scenario entails various complex dependen-
cies across languages. In the remainder of this section, we
focus on the following dependency chain:

• The pretty-printer generator translates SDF ASTs into
Stratego ASTs and thus requires the SDF and Stratego
signatures.

• The SDF signatures are generated by the signature gener-
ator using the Stratego pretty-printer.

• The Stratego pretty-printer is generated by the pretty-
printer generator, from the Stratego syntax definition.

• The pretty-printer generator is implemented as a Stratego
program within SDF.

We want to apply bootstrapping to SDF and Stratego to
detect defective changes to a language’s implementation. In
order to illustrate the difficulties of bootstrapping in the con-
text of language workbenches, we will deliberately introduce
a defect in the implementation of the pretty-printer genera-
tor. Normally, a pretty-printer needs to align with the parser
such that parse(pretty-print(ast)) = ast . We break the the
pretty-printer generator to violate this equation by generating
pretty-printers that print superfluous semicolons. This is an
obvious way to sabotage the pretty-printer generator and will
cause parse failures when parsing a pretty-printed string. We
expect bootstrapping to detect this defect. Figure 1 shows
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an iterative bootstrapping attempt with relevant dependen-
cies, illustrating code examples, and an explanation for each
bootstrapping iteration.

We start with a baseline of language implementations. We
introduce the defect in the pretty-printer generator and start
rebuilding the whole system in Iteration 1 using the baseline.
However, despite the defect, all components build fine in
Iteration 1. This is because it takes multiple iterations for the
defect to propagate through the system before it produces an
error. In our example, the defective pretty-printer generator
(Iteration 1) generates a broken pretty-printer (2), which is
used by the signature generator (3), which then generates
signatures in Stratego syntax but with superfluous semicolons
(4). All defects remain undetected until the build of PP-gen
or Sig-gen in Iteration 4 fails because of parse errors in the
signatures.

Our example illustrates multiple points. First, dependen-
cies between components in a language workbench are com-
plex, circular, and across languages. Second, language boot-
strapping yields a significant test case for language implemen-
tations and can successfully detect defects. Third, a single
build is insufficient because many defects only materialize
after multiple iterations of rebuilding.

This example still far removed from the complexity that
language workbenches face in practice. For example, Spoofax
features eight interdependent meta-languages and SDF alone
has seven generators that uses pretty-printers from four other
meta-languages.

2.2 Requirements
Based on our example above, we derive requirements for
sound bootstrapping support in language workbenches.

Sound Bootstrapping In our example, we needed 4 boot-
strapping iterations to find a failure caused by the defective
pretty-printer. In general, there is no way to know how many
iterations are necessary until a defect materializes or after
how many iterations it is safe to stop. Therefore, for sound
bootstrapping it is required to iterate until reaching a fixpoint,
that is, until the build stabilizes.

To determine if a fixpoint has been reached, we must be
able to compare the binaries that meta-languages generate.
We have reached a fixpoint if the generated binaries in
iteration k + 1 are identical to the binaries generated in
iteration k. Since the binaries are the same, further rebuilds
after reaching a fixpoint cannot change the implementation
or detect new defects.

A further requirement for fixpoint bootstrapping is that
compilers must be deterministic. That is, when calling a com-
piler with identical source files, the compiler must produce
identical binaries.

Bootstrapping always requires a baseline of meta-language
binaries to kickstart the process. Bootstrapping uses the
baseline only to rebuild the meta-languages in the first

bootstrapping iteration. After that, bootstrapping uses the
bootstrapped binaries.

Finally, the bootstrapping system should be general; it
should work for any meta-language in the language work-
bench.

Interactive Bootstrapping Environment Besides having a
bootstrapping system that satisfies the requirements above,
we also need to support bootstrapping in the interactive
environments of language workbenches. In particular, an
interactive environment needs to provide operations that (1)
start a bootstrapping attempt, (2) load a new baseline into the
environment after bootstrapping succeeded, (3) roll back to
an existing baseline after bootstrapping failed, and (4) cancel
non-terminating bootstrapping attempts.

Loading a baseline needs to be such that subsequent boot-
strapping attempts use the new baseline. When bootstrapping
fails, a rollback to the existing baseline is required such that
the defect causing the failure can be fixed and a new boot-
strapping attempt can be started. All operations should work
within the same language workbench environment, without
requiring a restart of the environment, or a new environment
to be started.

Bootstrapping Breaking Changes Bootstrapping helps to
detect changes that break a language implementation. How-
ever, sometimes breaking changes are desirable, for example,
to change the syntax of a meta-language. If we change the
syntax definition of some language L and the code written
in L simultaneously, bootstrapping fails to parse the source
code in Iteration 1 because the baseline only supports the
old syntax of L. If we change the syntax definition of L but
leave the code written in L unchanged, bootstrapping fails to
parse the source code in Iteration 2 because the parser of L
generated in Iteration 1 only supports the new syntax of L.

The bootstrapping environment should provide operations
for bootstrapping breaking changes.

3. Sound Bootstrapping
Compiling or bootstrapping a meta-language is a complex
operation that requires application of generators from many
meta-languages, to a meta-language that consist of sources in
several meta-languages. Therefore, we would like to find a
general compilation and bootstrapping algorithm.

We describe a method for sound bootstrapping that fulfills
the requirements from the previous section. As a first step to-
wards compilation and bootstrapping, we introduce a general
model for meta-language definitions and products. Using the
model, we describe a general compilation algorithm that com-
piles a meta-language definition into a meta-language product.
Finally, we show how to perform fixpoint bootstrapping op-
erations based on the model and compilation algorithm. We
use the bootstrapping scenario from Figure 1 as a running
example in this section.
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String(s) -> List(Op("S", [List([Str(s)])]))

String(s) -> List(Op("S", [List([Str(s), Str(";")])]))

pp-Decl : Signature(t) -> 
  [ H([SOpt(HS(), "0")], [S("signature")]), <pp-Sig> t ]

pp-Decl : Signature(t) -> 
  [ H([SOpt(HS(), "0")], [S("signature"), S(";")]), <pp-Sig> t ]

module; signatures/sorts/Sorts-sig
signature; constructors;
                      :; String ->; Sort
    Sort              :; Sort ->; Symbol
    ParameterizedSort :; Sort *; List(;Symbol); ->; Symbol

module signatures/sorts/Sorts-sig
signature constructors
                      : String -> Sort
    Sort              : Sort -> Symbol
    ParameterizedSort : Sort * List(Symbol) -> Symbol

Correct baseline, consisting of SDF and Stratego (STR), with a working Stratego 
pretty-printer (PP).

The language engineer changes PP-gen, the pretty-printer generator. In this example, 
they introduce a defect into the pretty-printer generator, that generates pretty-printers 
that print superfluous semicolons.
The defect is not observed, because the defect PP-gen has not been used yet.

PP is now a defect Stratego pretty-printer, generated with the defect PP-gen from 
SDF1, but is not included in Sig-gen yet. 
The defects are not observed, because the defect PP has not been used yet.

The defect Stratego pretty-printer from STR2 is now included in Sig-gen. However, 
SDF signatures (Sig) are still correct, since they are generated by the correct signature 
generator from SDF2, which imports a correct Stratego pretty-printer from STR1.
The defects are not observed, because the defect Sig-gen has not been used yet.

Defect SDF signatures, generated with the defect signature generator from SDF3. 
These signatures are not valid Stratego code. The defects are observed because PP-
gen and Sig-gen use signatures that cannot be parsed.

SDF0 STR0

SDF1 STR1
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Figure 1. Bootstrapping flow for bootstrapping SDF and Stratego with a defect pretty-printer generator. In each iteration, SDF
and Stratego are compiled, based on their previous versions. For example, SDF2 is compiled with SDF1 and STR1. In the fourth
iteration, bootstrapping fails because of a parse error, which can be traced back to the change which introduces a defect into the
pretty-printer generator in the first iteration. Source code on the right belongs to underlined/bold components on the left.
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3.1 Language Definitions and Products
As a first step towards bootstrapping, we introduce a general
model for language definitions and products. We require such
a model to describe a general compilation and bootstrapping
algorithm for meta-languages. Figure 2 shows the model
encoded in Haskell. In this subsection, we explain the model.
In later subsections, we explain the compilation and fixpoint
bootstrapping algorithm.

Language First of all, we use a unique name to identify
each meta-language Lang of a language workbench, such as
SDF and Stratego. However, a name alone is not enough
to uniquely distinguish meta-languages. Multiple versions
of the same meta-language exist when bootstrapping, for
example, a baseline version of SDF and the first bootstrapping
iteration of SDF. Therefore, we also use a version to identify
a language, LangID in the model. We denote a language L
with version 1 as L1. For example, with versioning, we can
uniquely identify different versions of SDF and Stratego:
SDF0, STR0, SDF1, STR1.

Bootstrapping applies the generators of a meta-language to
the definition of its own and other meta-languages. Therefore,
it is important to distinguish a meta-language definition from
a meta-language product, which results from compiling the
definition. The example in Figure 1 does not make this
distinction to reduce its complexity, but we require this
distinction here in order to precisely define compilation and
bootstrapping.

Language Definition Each language definition LangDef
defines a specific version of a language. We denote the
definition of language L at version 1 as L1d . The definition
consists of source artifacts written in different meta-languages
(field alang of Artifact). To compile a language definition,
we need to know what external artifacts and generators it
requires. To this end, a language definition defines artifact
and generator dependencies on previous versions of itself
or on specific versions of other languages. We use these
dependencies during compilation.

Language Product A language product LangProd models
a compiled meta-language definition. We denote the product
of compiling L1d as L1p . A product exports artifacts and gen-
erators. A generator Generator transforms artifacts of some
source language into artifacts of some target language. For
example, Sig-gen in SDF transforms SDF artifacts into Strat-
ego artifacts, or fails if the SDF artifacts are invalid, which
we model as a dynamic exception of function generate.

Example Language definitions and products model the
dependencies required to compile a definition into a product,
which we describe in the next subsection. For example,
SDF1d requires the application of generator Sig-gen of SDF0p ,
whereas STR1d requires the application of generator PP-gen of
SDF0p . Moreover, SDF1d requires the pretty-print table artifact
PP of STR0p .

3.2 Compilation
Before we can bootstrap multiple meta-language definitions
against a baseline of meta-language products, we must first
be able to compile a single meta-language definition. We
describe the compilation algorithm that compiles a single
language definition using the model from above.

Function compile takes a language definition and a base-
line of language products, and produces a new language prod-
uct from the definition. The basic idea of the algorithm is
to run the required generators on the source artifacts and
the required external artifacts. This yields new generated
artifacts that we package into a language product using
createLangProd.

We first collect all generator inputs, which are the source
artifacts (dsources def) of the definition and the required
artifacts according to dependencies (dartDeps def). We
use the baseline to resolve dependencies; function getProd
finds the product of the required LangID. Similar to required
artifacts, we collect the required generators according to
dependencies (dgenDeps def).

When running generators, we need to make sure to call
them in the right order: A generator must run later if it
consumes an artifact produced by another generator. For
example, SDF1d requires the application of generator Sig-gen,
which produces Stratego code. But SDF1d also requires the
application of the Stratego-compiler generator of STR0p , which
translates Stratego code into an executable. Thus, we must
run Sig-gen before the Stratego compiler. To this end, we
sort all languages topologically according to their source and
target languages.

Function runGenerators iterates over the sorted source
languages and for each one applies all generators of the cur-
rent source language lang. Function runGeneratorsFor finds
all relevant generators g that take artifacts of lang as input
and it finds all relevant artifacts a of lang. It then calls the
generate function of all relevant generators g on all relevant
artifacts a and collects and returns the generated artifacts.
Function runGenerators passes the generated artifacts down
when recursing to allow subsequent generators to compile
them. If any generate function fails with a dynamic excep-
tion, the compilation fails.

Finally, after generating all artifacts, we create a language
product from the language definition and the generated
artifacts by calling createLangProd. This function must be
implemented by the language workbench. We abstract over
how a language workbench determines which artifacts to
export and which generators to create from generated artifacts.
For example, Spoofax determines which artifacts to export
from a configuration file in the language definition, has
built-in notions of generators to create based on generated
artifacts, and allows a language definition to configure its
own generators.
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-- Model for languages, language definitions with sources, and language products with artifacts and generators.
type Version = Int
type Lang = String
data LangID = LangID { name :: Lang, version :: Version }
data Artifact = Artifact { aname :: String, alang :: Lang, acontent :: String }
data LangDef = LangDef { dlang :: LangID, dsources :: [Artifact], dartDeps :: [LangID], dgenDeps :: [LangID] }
data Generator = Generator { gname :: String, gsource :: Lang, gtarget :: Lang, generate :: Artifact -> Artifact }
data LangProd = LangProd { plang :: LangID, partifacts :: [Artifact], pgenerators :: [Generator] }
type Baseline = [LangProd]

getProd :: LangID -> Baseline -> LangProd
getProd lang baseline = fromJust $ find (\prod -> lang == plang prod) baseline

-- Compile. Sort languages by generator source/target and run relevant generators against relevant artifacts.
compile :: LangDef -> Baseline -> LangProd
compile def baseline = createLangProd def (runGenerators sortedLangs generators inputs)

where inputs = dsources def ++ [ a | l <- dartDeps def, a <- partifacts (getProd l baseline) ]
generators = [ g | l <- dgenDeps def, g <- pgenerators (getProd l baseline) ]
sortedLangs = topsort [ l | LangID l _ <- dgenDeps def ] [ (gsource g,gtarget g) | g <- generators]

runGenerators :: [Lang] -> [Generator] -> [Artifact] -> [Artifact]
runGenerators [] gens inputs = inputs
runGenerators (lang:langs) gens inputs = runGenerators langs gens (inputs ++ runGeneratorsFor lang gens inputs)

runGeneratorsFor :: Lang -> [Generator] -> [Artifact] -> [Artifact]
runGeneratorsFor lang gens inputs = [ generate g a | g <- gens, a <- inputs, gsource g == lang, alang a == lang ]

createLangProd :: LangDef -> [Artifact] -> LangProd -- Implemented by the language workbench

-- Fixpoint bootstrap language definitions with a baseline. Update versions in the first iteration, then fixpoint.
bootstrap :: Version -> [LangDef] -> Baseline -> (Baseline, [LangDef])
bootstrap v defs baseline =

let firstBuild = [ compile (setVersion v def) baseline | def <- defs ] in
bootstrapFixpoint (prepareFixpoint v defs) firstBuild

bootstrapFixpoint :: [LangDef] -> Baseline -> (Baseline, [LangDef])
bootstrapFixpoint defs baseline =

let newBaseline = [ compile def baseline | def <- defs ] in
if baseline == newBaseline
then (newBaseline, defs)
else bootstrapFixpoint defs newBaseline

setVersion :: Version -> LangDef -> LangDef
setVersion v (LangDef (LangID l _) srcs gdeps adeps) = LangDef (LangID l v) srcs gdeps adeps

prepareFixpoint :: Version -> [LangDef] -> [LangDef]
prepareFixpoint v defs = [ prepareFixpointDef v bootstrappedLangs def | def <- defs ]

where bootstrappedLangs = [ l | LangDef (LangID l _) _ _ _ <- defs ]

prepareFixpointDef :: Version -> [Lang] -> LangDef -> LangDef
prepareFixpointDef v langs (LangDef (LangID l _) srcs adeps gdeps) =

LangDef (LangID l v) srcs [ updateDep v langs dep | dep <- adeps ] [ updateDep v langs dep | dep <- gdeps ]

updateDep :: Version -> [Lang] -> LangID -> LangID
updateDep v langs (LangID l vold) = if l `elem` langs then LangID l v else LangID l vold

Figure 2. Model for sound bootstrapping, with algorithms for compilation and fixpoint bootstrapping, encoded in Haskell.

3.3 Fixpoint Bootstrapping
We can now use compilation to define fixpoint bootstrapping.
In general, there is no way to know how many bootstrapping
iterations are required before it is safe to stop. Therefore, we
iteratively bootstrap meta-languages until reaching a fixpoint.
We define a general fixpoint bootstrapping algorithm using
the model and compilation algorithm from above.

Function bootstrap takes the version of the new baseline,
a list of meta-language definitions, and an existing baseline,
and it produces a new baseline of the given version. The basic
idea of the algorithm is to compile meta-language definitions
in iterations, until we reach a fixpoint. However, to avoid
building against the old baseline repeatedly, we have to update
the versions of the language definitions in the first iteration.
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In the first iteration, function bootstrap calls compile on
modified definitions def where we have set the version to v.
This yields a list of language products firstBuild that con-
tains products of version v. We use this as starting point for
fixpoint computation. In addition, we update the dependen-
cies in defs using function prepareFixpoint, which updates
versions and dependencies of all bootstrapped languages to v.

To produce a new baseline, we repeat bootstrapping in
bootstrapFixpoint until reaching a fixpoint. In each iter-
ation, we compile all meta-language definition into meta-
language products. If the new baseline is equal to the baseline
from the previous iteration, we have reached a fixpoint and
return the new baseline.

To compare the language products of a baseline, we com-
pare the name, version, artifacts, and generators of products.
To compare generators, we need to compare the executables
of generators (not modeled in Haskell). In practice, this boils
down to comparing binary files byte-for-byte, ignoring non-
deterministic metadata such as the creation date or the last
modified date. We change meta-language versions each itera-
tion in Figure 1 for illustrative purposes. However, bootstrap
only changes versions once, to prevent baseline comparison
from always failing because of version differences.

Bootstrapping fails with a dynamic exception if any com-
pile operation fails. Otherwise, our algorithm soundly pro-
duces a new baseline. In the next section, we explain how to
manage baselines in interactive environments.

4. Interactive Bootstrapping
A language workbench provides an interactive environment
in which a language engineer can import language defini-
tions, make changes to the definitions in interactive editors,
compile them into a language products, and test the changed
languages. This allows a language engineer to quickly iter-
ate over language design and implementation. Likewise, a
meta-language engineer wants to quickly iterate over meta-
language design and implementation [18]. Therefore, we need
to support running bootstrapping operations in the interactive
language workbench environment.

A language workbench manages an interactive environ-
ment with a language registry that manages all loaded lan-
guage definitions and language products. The language reg-
istry loads language definitions and products dynamically,
that is, while the environment is running without restarting
the environment or starting a new one. The language work-
bench should react to loading, reloading, and unloading of
language definitions and products, for example, by setting up
file associations and updating editors.

To support interactive development, meta-language compi-
lation interacts with the language registry. Instead of receiving
a baseline as argument, in an interactive environment function
compile from the previous section uses the language registry
to retrieve language products. Thus, a change to the registry
affects subsequent compilations.

Since bootstrapping relies on compile, in an interactive
environment bootstrapping also interacts with the language
registry. Instead of receiving a baseline as argument, in
an interactive environment function bootstrap from the
previous section uses the language registry to retrieve an
initial baseline. Before calling compile in each iteration,
bootstrap needs to load/reload the compiled products of
version v. If bootstrapping succeeds, the new baseline stays in
the language registry upon termination of bootstrap. But if
bootstrapping fails with an exception, subsequent operations
may not use the intermediate language products. To this
end, bootstrap needs to rollback changes to the registry
by unloading the language products of version v, and rolling
back version changes in definitions.

Based on these changes to the algorithms and the language
registry, our bootstrapping model supports interactive envi-
ronments. Specifically, we can start a bootstrapping attempt
with bootstrap, load a new baseline into the registry, and roll-
back the registry after bootstrapping failed or was canceled
by the user.

5. Bootstrapping Breaking Changes
In the context of bootstrapping, a breaking change is a change
to meta-language definitions such that fixpoint bootstrapping
fails. Instead of treating such change as a whole, a breaking
change needs to be decomposed into multiple smaller changes
for which fixpoint bootstrapping succeeds.

For example, changing a keyword in the SDF meta-
language is a breaking change, because it will cause parse
failures for SDF source files elsewhere. Changing a keyword
and all usages of the old keyword is also a breaking change,
because we use the old baseline on the first build, which does
not support the new keyword.

To perform such a breaking change, we need decompose
it into smaller non-breaking changes. Using such decom-
position, fixpoint bootstrapping succeeds after each change.
However, it is actually sufficient to only perform a full fix-
point bootstrap after the final change and to only find defects
then. For the intermediate changes, it is enough to bootstrap
a single iteration in order to construct a new baseline for
the subsequent builds. To support this, we propose to extend
the interactive environment with an additional bootstrapping
operation that bootstraps a single iteration only. This will
still find all defects in the final fixpoint bootstrapping, but
intermediate defects may go unnoticed until then.

A common breaking change that occurs when evolving
a meta-language is the change of a feature F to F ′. For
example, this includes changing the syntax of Stratego or
changing the Sig-gen generator in SDF. We can decompose
a change of feature F to F ′ in M by (1) adding F

′
as an

alternative to F in M, (2) executing a single bootstrap iteration,
(3) changing all source artifacts written in M to use F

′
instead

of F , (4) executing a single bootstrap iteration, (5) removing
F from M, and finally (6) performing a fixpoint bootstrap.

53



SDF2

SDF3

Stratego

ESV

NaBL
TS

NaBL2

Dynsem

Figure 3. Generator dependencies between meta-languages.
A generator dependency indicates that a meta-language re-
quires (some) generators of a meta-language.

We have successfully used this decomposition for chang-
ing features in our evaluation.

6. Evaluation
To evaluate our bootstrapping method, we realized it in the
Spoofax language workbench and bootstrapped Spoofax’s
eight meta-languages.

6.1 Implementation
We have implemented the model, general compilation algo-
rithm, and general bootstrapping algorithm of our sound boot-
strapping method in the interactive Eclipse environment of
the Spoofax language workbench. With our implementation,
a meta-language engineer can import meta-language defini-
tions into Eclipse, make changes to the definitions, and run
bootstrapping operations on the definitions to produce new
baselines. The Eclipse console displays information about the
bootstrapping process, e.g. when a new iteration starts, which
artifacts were different during language product comparison,
and any errors that occur during bootstrapping.

When bootstrapping fails, changes are reverted, and the
console shows observed errors. Bootstrapping can also be
cancelled by cancelling the bootstrapping job. When boot-
strapping succeeds, the new baseline and meta-language defi-
nitions are dynamically loaded, such that the meta-language
engineer can start making changes to the definitions and run
new bootstrapping operations.

6.2 Meta-languages
To evaluate the bootstrapping method and implementation,
we bootstrap Spoofax’s meta-languages. Spoofax currently
consists of eight meta-languages: SDF2, SDF3, Stratego,
ESV, NaBL, TS, NaBL2, and DynSem. The generator depen-
dencies between these meta-languages are shown in Figure 3.

Syntax used to be specified in the SDF2 [28] language,
but we have since moved on to the more advanced SDF3 [30]
language with syntax templates from which pretty-printers

are automatically derived. SDF2 still exists because of com-
patibility reasons (some languages still use it) but also to use
it as a target for generation. The SDF3 compiler generates
SDF2, which the SDF2 compiler turns into a parse table. The
SDF that we have been using as a running example in this
paper is actually SDF3.

ESV is a domain-specific meta-language for specifying
editor services such as syntax coloring, outlines, and folding.
Every meta-language (including ESV itself) uses ESV to
specify its editor services, such that Spoofax can derive an
editor for the meta-languages.

Stratego [4, 29] is used for specifying term transforma-
tions and static semantics in several (meta)languages, and
is also a common target for generation. For the name and
type analysis domains, NaBL [19] is a domain-specific meta-
language for specifying name analysis, and TS for specifying
type analysis in terms of typing rules. NaBL2 is an evolution
of NaBL that combines NaBL and TS in one language. Again,
the older version of the language is kept for compatibility rea-
sons. Finally, DynSem [27] is a meta-language for dynamic
semantics specification through operational semantics.

We have successfully bootstrapped these meta-languages
with our bootstrapping implementation.

6.3 Bootstrapping Changes
We evaluate our bootstrapping method and its implemen-
tation in Spoofax by bootstrapping changes to Spoofax’s
meta-languages. We could not test our bootstrapping im-
plementation against existing changes made to the meta-
languages, because our bootstrapping implementation ex-
pects meta-languages to be in a specific format which ex-
isting meta-languages are not. Therefore, we converted the
meta-languages to this format and constructed realistic and
interesting changes for evaluation.

We have logged the changes in the form of a Git reposi-
tory1, which contains a readme file explaining how to view
the repository. Each change is tagged with a version in the
Git repository. For each tag, sources and binaries of the cre-
ated baseline are available. Tags for fixpoint bootstrapping
operation also include the bootstrapping log. We now go over
each change scenario to explain what we changed, why we
made the change, and any issues that occurred.

Initial Bootstrap To be able to bootstrap Spoofax’s meta-
languages, we convert the meta-language definitions to work
with our bootstrapping implementation. We successfully boot-
strap the meta-languages by running a fixpoint bootstrapping
operation. Version v2.1.0 is the first fixpoint bootstrap that
includes all meta-languages, and will be used as a baseline
for the next change.

SDF2 in SDF3 SDF2 currently exports a handwritten
pretty-printer, which is imported by SDF3 to pretty-print
SDF2 source files. A handwritten pretty-printer is bad for

1 https://github.com/spoofax-bootstrapping/bootstrapping

54

https://github.com/spoofax-bootstrapping/bootstrapping


maintenance because it must be manually changed whenever
the syntax changes. However, a generated pretty-printer is
automatically updated in conjunction with changes to the
syntax, which reduces the maintenance effort. Therefore, we
convert SDF2’s syntax to SDF3, such that SDF3’s pretty-
printer generator, generates a pretty-printer to replace the
handwritten one.

This is a breaking change because SDF3 imports SDF2’s
pretty printer, and we change the pretty-printer that SDF2
exports, so SDF3’s imports need to change. We decompose
the change into three parts by applying the feature change
decomposition shown previously: (1) we convert SDF2’s
syntax to SDF3 and export the generated pretty-printer, while
still exporting the handwritten pretty-printer, (2) we change
SDF3 to use the generated pretty-printer from SDF2, and (3)
we remove the handwritten pretty-printer from SDF2. We
apply each bootstrapping operation in the same environment,
to test the interactive language workbench environment.

We first convert SDF2’s syntax to SDF3, and run a single
iteration bootstrapping operation to produce baseline v2.1.1.
However, we have converted the syntax of SDF2 wrongly,
constructor names are supposed to be in lowercase to retain
compatibility with existing SDF2 transformations. Further-
more, lowercase constructor names such as module conflict
with Stratego’s syntax, which uses module as a reserved key-
word. Therefore, we change SDF3 to support quotation marks
in constructor names to support ’module, which does not con-
flict with Stratego, and run a single iteration bootstrapping
operation to produce baseline v2.1.2.

We convert SDF2’s grammar again, with lowercase con-
structor names, and prefix reserved keywords with ’ where
needed, run a single iteration bootstrapping operation to cre-
ate baseline v2.1.3. We use the newly generated signatures
and pretty-printer from SDF2 in SDF3, run a fixpoint boot-
strapping operation (to confirm that the pretty-printer works),
which succeeds, and produces baseline v2.1.4.

Finally, we clean up SDF2 by removing the handwritten
pretty-printer. We also fix a bug in Stratego that causes some
imports to loop infinitely during analysis, that was uncovered
by the import dependencies between SDF2 and SDF3, which
now mutually import each other. A fixpoint bootstrapping
operation produces baseline v2.1.5.

Stratego in SDF3 We convert Stratego’s syntax from SDF2
to SDF3 to also benefit from generated signatures and pretty-
printers, instead of handwritten ones. This breaking change is
decomposed in a similar way. However, we do not remove the
handwritten pretty-printer yet, because multiple other meta-
languages are using it, while we only change NaBL to use
the generated one.

We convert Stratego’s syntax to SDF3, run a single itera-
tion bootstrapping operation to produce baseline v2.1.6. We
change NaBL to use the newly generated Stratego signatures
and pretty-printer, and run a fixpoint bootstrapping operation
to produce baseline v2.1.7.

Results We were able to successfully bootstrap eight meta-
languages with realistic changes, including complex breaking
changes that required multiple bootstrapping steps. Bootstrap-
ping is sound because it terminates, finds defects when we
introduce them, and produces a baseline when bootstrapping
succeeds. We were also able to run multiple bootstrapping
operations in the interactive language workbench environ-
ment, where the baseline produced from bootstrapping is
loaded into the environment and used to kickstart the next
bootstrapping operation.

7. Related Work
We now discuss related work on bootstrapping.

Bootstrapped General-Purpose Languages Most general-
purpose programming languages are bootstrapped. We dis-
cuss early languages and compilers that were bootstrapped.

The first programming language to be bootstrapped in
1959 is the NELIAC [12] dialect of the ALGOL 58 language.
The main advantage of bootstrapping the compiler is imple-
mentation in a higher-level language. Instead of writing the
compiler in assembly, it could be written in NELIAC itself,
which is a much higher-level language than assembly. This
allowed the compiler to be more easily be cross-compiled
to the assembly of other machines, since the cross-compiled
versions could be written in NELIAC.

Lisp was bootstrapped by creating a Lisp compiler writ-
ten in Lisp, which was interpreted by an existing Lisp in-
terpreter [23]. It is the first compiler that compiled itself by
being interpreted by an existing interpreter of that language.

The Pascal P compiler [13] is a compiler for the minimal
subset of standard PASCAL that it can still compile itself. It
generates object code for a hypothetical stack computer SC.
The first version of the compiler is written in assembly for
SC. Using an assembler or interpreter for SC, the first com-
piler is compiled or executed. The compiler is bootstrapped
by writing the compiler in itself, and compiling it with the
existing compiler. The bootstrapped compiler is validated
by comparing the assembled compiler binary and the boot-
strapped compiler binary, a convention that we still apply to
this day.

Bootstrapping We now look at literature on the art of
bootstrapping itself.

Tombstone diagrams (also called T-diagrams) are a graph-
ical notation for reasoning about translators (compilers), first
introduced in [3] and extended with interpreters and machines
in [6]. T-diagrams are most commonly used to describe boot-
strapping, cross-compilation, and other processes that require
executing complex chains of compilers, interpreters, and ma-
chines [20]. T-diagrams are a useful tool for graphically rea-
soning about compilers and bootstrapping, orthogonal to the
bootstrapping framework presented in this paper.

Axiomatic bootstrapping [1] is an approach for reasoning
about bootstrapping using axioms and equations between
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those axioms, to verify if a change to a compiler will result in
a successful bootstrap. They present axioms for an interactive
ML runtime and compiler, which compiles to native code, and
needs to deal with multiple architectures, calling conventions,
and binary formats. For example, instantiating the axioms
and equations show that changing the calling convention of
the compiler causes bootstrapping to fail, and that a special
cross-compilation operation can bootstrap the change.

Axioms are a useful tool to verify if a single bootstrapping
iteration will work, and to reason about how a breaking
change should be split up over multiple bootstrapping steps.
However, axioms cannot be used to find hidden defects, such
as the example from Figure 1, because those defects can
manifest over an arbitrary number of iterations. Axioms also
cannot be used to reason if a fixed point can be reached,
for the same reason. Therefore, it is complementary to the
bootstrapping framework presented in this paper.

Language Workbenches We now look at related work on
bootstrapping in language workbenches.

Xtext [2] is a framework and IDE for the development of
programming languages and DSLs. Its Grammar and Xtend
meta-languages are bootstrapped. However, Xtext does not
support dynamic loading, so it is not possible to bootstrap the
meta-languages in the language workbench environment.

MPS [31] is a projectional language workbench. It has
several meta-languages which are bootstrapped, but are read-
only in the language workbench environment, meaning that
they cannot be bootstrapped in the language workbench en-
vironment. MPS supports dependencies between languages
through its powerful extension system. A meta-language can
be extended, and that extension could be bootstrapped. How-
ever, MPS does not support versioning or undoing changes,
making rollbacks impossible if defects are introduced.

MetaEdit+ [15] is a graphical language workbench for
domain-specific modeling. Some of its meta-languages are
bootstrapped, and can be bootstrapped in the language work-
bench environment. When changes are applied, they imme-
diately apply to the bootstrapped meta-language and other
languages. If an applied change breaks the language, the
change can be undone or abandoned entirely to go back to
a previous working state, after which the error can be fixed.
However, they do not document their bootstrapping method,
so it cannot be applied to other language workbenches.

Ensō [21, 26] is a project to enable a software develop-
ment paradigm based on interpretation and integration of
executable specification languages. Ensō’s meta-languages
are bootstrapped, but has no general framework for fix-
point bootstrapping or versioning of meta-languages. The
meta-language engineer has to write code which handles
fixpoint bootstrapping and versioning specifically for their
meta-languages.

Rascal [16, 17] is a metaprogramming language and IDE
for source code analysis and transformation. In the current
version, Rascal’s parser is bootstrapped, but the rest is im-

plemented as an interpreter in Java. Development versions
include a new Rascal compiler which is completely boot-
strapped. However, the Rascal IDE has no general support
for fixpoint bootstrapping or versioning of languages.

SugarJ [7, 8] is a Java-based extensible programming lan-
guage that allows programmers to extend the base language
with custom language features. In principle, SugarJ can be
bootstrapped, because its compiler is written in Java and Java
is a subset of SugarJ. However, in practice this was never
done, and it is not obvious if that would actually work.

Racket [25] is an extensible programming language in the
Lisp/Scheme family, which can serve as a platform for lan-
guage creation, design, and implementation. DrRacket [10,
11] is the Racket IDE. Racket is mostly bootstrapped, but the
core of the compiler and interpreter are implemented in C.
The parts of Racket that are written in Racket can be changed
interactively in DrRacket, which affects subsequently running
Racket programs. A defect introduced in Racket’s self defini-
tion may prevent bootstrapping to succeed, which requires a
restart of the DrRacket IDE.

Staged Metaprogramming Staged metaprogramming ap-
proaches such as MetaML [24], MetaOCaml [5], Mint [32],
and LMS [22] provide typesafe run-time code generation,
which ensures that generated code does not contain typing
defects. However, these approaches do not provide support
for bootstrapping.

8. Conclusion
Bootstrapping is an efficient means for detecting defects in
compiler implementations and should be useful for language
workbenches as well. However, bootstrapping compiler-
compilers of language workbenches needs to handle the
intricate interactions between meta-languages. Unfortunately,
previous literature on bootstrapping ignores these intricacies.

We present a sound method for meta-language bootstrap-
ping. Given a baseline and updated meta-language defini-
tions, our bootstrapping algorithm constructs a new baseline
through fixpoint self-application of the meta-languages. We
explain how our algorithms can be used in interactive envi-
ronments and how to decompose breaking changes that occur
when evolving meta-languages.

We have implemented the approach in the Spoofax lan-
guage workbench and evaluated it by successfully bootstrap-
ping eight interdependent meta-languages, and report on our
experience with bootstrapping two breaking changes. This
makes Spoofax into a laboratory for meta-language design
experimentation.
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