
FlowSpec: Declarative Dataflow Analysis
Specification

Jeff Smits
TU Delft

The Netherlands
j.smits-1@tudelft.nl

Eelco Visser
TU Delft

The Netherlands
e.visser@tudelft.nl

Abstract
We present FlowSpec, a declarative specification language
for the domain of dataflow analysis. FlowSpec has declar-
ative support for the specification of control flow graphs
of programming languages, and dataflow analyses on these
control flow graphs. We define the formal semantics of
FlowSpec, which is rooted in Monotone Frameworks. We
also discuss implementation techniques for the language,
partly used in the prototype implementation built in the
Spoofax Language Workbench. Finally, we evaluate the ex-
pressiveness and conciseness of the language with two case
studies. These case studies are analyses for Green-Marl, an
industrial, domain-specific language for graph processing.
The first case study is a classical dataflow analysis, scaled to
this full language. The second case study is a domain-specific
analysis of Green-Marl.

CCS Concepts • Software and its engineering → Do-
main specific languages;

Keywords control flow graph, dataflow analysis

ACM Reference Format:
Jeff Smits and Eelco Visser. 2017. FlowSpec: Declarative Dataflow
Analysis Specification. In Proceedings of 2017 ACM SIGPLAN In-
ternational Conference on Software Language Engineering (SLE’17).
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3136014.
3136029

1 Introduction
Dataflow analysis is a static analysis that answers questions
on what may or must happen before or after a certain point
in a program’s execution. With dataflow analysis we can
answer whether a value written to a variable here may be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SLE’17, October 23–24, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5525-4/17/10. . . $15.00
https://doi.org/10.1145/3136014.3136029

[x:=2]1;
[y:=4]2;
[x:=1]3;
if [y>x]4 then

[z:=y]5;
else

[z:=y*y]6;
[x:=z]7

LV◦ LV•
∅ ∅

∅ {y}
{y} {x,y}
{x,y} {y}
{y} {z}

{y} {z}
{z} ∅

1

2

3

4

5 6

7

Figure 1. Classical dataflow analysis Live Variables (LV). On
the left is an example program in the While language, with
added brackets to number program fragments. On the right
is the control flow graph (CFG) of the program. In the centre
is the analysis result. The LV◦ and LV• are before and after
the CFG node’s variables accesses respectively.

read later. Such dataflow analyses can be used to inform
optimisations.
For example, consider Live Variables analysis, illustrated

in Figure 1. This type of dataflow analysis can identify dead
code, which can be removed as an optimisation. In the ex-
ample this would be statement 1 since it writes x which is
overwritten by statement 3 without being read in between.
The Live Variables analysis provides a set of variables which
are read before being written after each statement in LV•.
The figure shows this in the LV• set of statement 1, which
does not contain x.

Dataflow may also be part of a language’s static semantics.
For example, in Java a final field in a class must be initialised
by the end of construction of an object of that class. Since
constructor code can have conditional control flow, a data-
flow analysis is necessary to check that all possible execution
paths through constructors actually assign a value to the final
field [Gosling et al. 2005, sect. 16.9].

Dataflow analyses are often operationally encoded, whether
in a general purpose language, an attribute grammar system
or a logic programming language. This encoding is both an
overhead for the engineer implementing it, as well as an
overhead in decoding for anyone who wishes to understand
the analysis.

In formal, mathematical descriptions of a dataflow analy-
sis, the common patterns are often factored out. This shows
commonalities between different analyses, allows the study
of those commonalities and differences, as well as general

221

https://doi.org/10.1145/3136014.3136029
https://doi.org/10.1145/3136014.3136029
https://doi.org/10.1145/3136014.3136029

SLE’17, October 23–24, 2017, Vancouver, Canada Jeff Smits and Eelco Visser

proofs about common pieces. But this abstraction again gives
an overhead for understanding any particular analysis, as it
first requires the understanding of the common framework
in full generality.

Our goal is to provide a concise, readable, declarative spec-
ification language for dataflow analysis that is more intuitive
than traditional encodings and decomposed descriptions.
Our domain-specific meta-language, FlowSpec, can provide
a unified view of a dataflow analysis, as opposed to an ab-
stract formal description, while focussing on What, instead
of How.
This paper makes the following contributions:

• We present FlowSpec, a new declarative program-
ming language for Dataflow Analysis, introduced in
Section 2.
• We define the dynamic semantics of the language, by
using Monotone Frameworks (see Section 2) as a se-
mantic model. The semantics can be found in Section 3.
• We show the expressivity of the language in multi-
ple examples and describe two larger case studies in
Section 5.

In Section 4 we discuss our prototype implementation of
FlowSpec in the Spoofax language workbench, in Section 6
we discuss related work and Section 7 concludes the paper.

2 FlowSpec and Monotone Frameworks
Our main inspiration for FlowSpec is Monotone Frame-
works [Kam and Ullman 1977], a formal method for describ-
ing dataflow analyses. We assume the reader is somewhat
familiar with this work and give a summary here. Through-
out this paper we use the notation from [Nielson et al. 2005],
which uses the dual notation of the original publication (e.g.
⊔ instead of ∧).
In short, Monotone Frameworks are a general lattice

theoretic framework for the description of dataflow anal-
yses. It captures the commonalities of intra-procedural, flow-
sensitive dataflow analyses, and requires a number of com-
ponents to be plugged in for any specific analysis. Given
the correct components, this framework not only gives a
clear, terminating semantics to a dataflow analysis, but also
a simple worklist algorithm that can perform the analysis.

We define the semantics of FlowSpec in Section 3, by map-
ping our DSL constructs onto Monotone Frameworks. In this
section we will introduce the language by example, as well as
refer to the corresponding Monotone Frameworks terminol-
ogy. We use two classical, set-based analyses as examples of
this section. Live Variables analysis was already introduced
in Figure 1. The second example is Available Expressions,
which can be found in Figure 2. Available Expressions is
another classical dataflow analysis, that identifies expres-
sions that have been calculated before. These expressions
are available while variables used in the expressions are not

[x:=a+b]1;
[y:=a*b]2;
while [y>a+b]3 do

[a:=a+1]4;
[x:=a+b]5

AE◦ AE•
∅

{
a+b
}{

a+b
} {

a+b,a*b
}{

a+b
} {

a+b
}{

a+b
}

∅

∅
{
a+b
}

1

2

3

4

5

Figure 2. Classical dataflow analysis Available Expressions
(AE). On the left is an example program in the While lan-
guage, with added brackets to number program fragments.
On the right is the control flow graph (CFG) of the program.
In the centre is the analysis result. The open and closed
dots on the analysis abbreviation are before and after a CFG
node’s effect respectively.

S ::= n := a | S1; S2 Stmt
| if b then S1 else S2 | while b do S

a ::= x | n | a1 opa a2 AExp
b ::= true | false | not b | b1 opb b2 | a1 opr a2 BExp
B ::= n := a | b Labeled blocks

Figure 3. Grammar of the While language used in the ex-
amples. Literals are on a grey background. op · are arithmetic,
boolean, and relational operations. Boolean expressions are
only labeled when they are conditions of a statement.

cfg Root(s) = entry → cfg s → exit

cfg a@Assign(_, _) = entry → a → exit

cfg Seq(s1,s2) = entry → cfg s1 → cfg s2 → exit

cfg IfThenElse(c, t, e) =

entry → c → cfg t → exit ,

c → cfg e → exit

cfg While(c, b) = entry → c → cfg b → c → exit

Figure 4. Control flow graph rules for the While language.
Each rule can have one or more chains of edges, where the
virtual entry and exit nodes point out the actual start and
end of the local control flow given. Note how the rule for if
has two chains from the condition to the different branches,
and the rule for while uses the condition twice to make a
loop.

written to. The analysis result can be used for an optimisa-
tion that eliminates common subexpressions. In the example,
the while condition (labelled 3) uses a+b, but this expres-
sion is available already according AE◦. The grammar of the
example language can be found in Figure 3.
We will now discuss the features of FlowSpec and the

related components that Monotone Frameworks require.

Control flow graphs Since the dataflow analysis is flow-
sensitive, the first thing we need is a control flow graph.
We build this control flow graph as edges between relevant

222

FlowSpec: Declarative Dataflow Analysis Specification SLE’17, October 23–24, 2017, Vancouver, Canada

parts of the program. In FlowSpec, the cfg function can be
defined to provide a control flow graph. In Figure 4 we show
the specification of cfg for the While language used in the
examples. The function is defined case-by-case on nodes of
the Abstract Syntax Tree (AST) and maps these nodes to
local control flow. In the body of the function, virtual entry
and exit nodes are accessible, to mark entry and exit of the
local control flow. Recursive calls can be used to connect
control flow of sub-trees. Matched AST nodes can be used
directly in the control flow graph to make them control flow
graph nodes. Using the name bound to an AST node twice in
the same cfg rule reuses the same control flow graph node.
Structurally equal AST nodes from different parts of the
program are considered different control flow graph nodes.

In Monotone Frameworks program fragments are labelled
to make this distinction of control flow nodes clear. A control
flow graph F is seen as a set of edges (a subset of Lab × Lab)
between different labels.
The direction that the control flow graph goes into is

found in the direction of the edges. Flipping all edges of
the graph gives the reverse control flow graph. In Monotone
Frameworks one component that must be consistent with the
forward or reverse control flow graph is the set of ‘extremal
labels’ E ∈ P (Lab). These are normally the global entry
nodes for the forward control flow graph, and the global exit
nodes for the reverse control flow graph, but the framework
allows for a different set if desired. In FlowSpec we leave
these nodes implicit and always use the relevant extremal
nodes of the control flow graph, depending on forward or
reverse usage.

Dataflow type and transfer functions The result of a
dataflow analysis is called a dataflow property in FlowSpec.
During analysis the data of this property is propagated along
the control flow graph. Every node in the control flow graph
has an associated effect, or transfer function, on this data.
One can see this as an abstracted version of the effect that the
program fragment would have during program execution or
a trace thereof.
In Figure 5 we show this transfer function for Live Vari-

ables analysis. The specification at the top uses a single rule
that matches any AST node t with a control flow edge to
s. This rule says that Live t is defined in terms of Live s,
with the kill set subtracted and the gen set added. These kill
and gen sets mark the analysis as a classical dataflow anal-
ysis. FlowSpec’s unified rule defines both the direction of
the dataflow analysis, in this case backward, and defines the
dataflow property in terms of itself elsewhere in the graph.
But we still have these kill and gen functions that are fac-
tored out. In the bottom of the figure we show the idiomatic
FlowSpec specification of Live Variables, which inlines the
kill and gen functions. In this case we still use something
similar to gen; Reads is a property that just contains the
read variables in an expression. Note that a more specific

Live t → s = Live s - kill t + gen t

fun kill (t: term): Set string = match t with

| Assign(n, _) ⇒ {n}

| _ ⇒ {}

fun gen (t: term): Set string = match t with

| Assign(_, e) ⇒ gen e

| Ref(n) ⇒ {n}

| Gt(e1, e2) ⇒ gen e1 + gen e2

| Lt(e1, e2) ⇒ gen e1 + gen e2

| Eq(e1, e2) ⇒ gen e1 + gen e2

| Not(e) ⇒ gen e

| Plus(e1, e2) ⇒ gen e1 + gen e2

| Mul(e1, e2) ⇒ gen e1 + gen e2

// Etc.

Live Assign(n, e) → s = Live s - {n} + Reads e

Live t → s = Live s + Reads t

Figure 5. Live Variables specification in FlowSpec. The
top has the classical specification in terms of gen and
kill sets, whereas the bottom is the idiomatic specification
for FlowSpec. Reads is defined as a property to avoid re-
computation, but otherwise looks similar to gen.

Live _ → exit = {"EAX"}

Figure 6. Example of extremal value {EAX} in FlowSpec for
Live Variables

name already helps to show the intention of the analysis,
and makes it more reusable. We now have two rules: one for
the assignment, and one default rule for everything else.
The type of the dataflow property is L in our Monotone

Frameworks presentation. The transfer functions fℓ : L →
L are connected to the labels ℓ of the control flow graph
nodes. Monotone Frameworks also take a component ι, the
extremal value. This is the value with which the extremal
labels are initialised. For example, in Live Variables analysis
we assumed all variables to be dead at the end of the program,
but many other assumptions could be useful. In Figure 6 we
show the FlowSpec representation of extremal values, by
a rule that uses exit in the control flow graph edge pattern,
which in this case stands for the global exit.

Lattices and termination The control flow graph can
split and merge because of conditional control flow such
as an if statement. We can propagate data along both edges
of a split, but need to do something about the data coming
from multiple directions at a merge. In FlowSpec this trans-
lates to a control flow edge pattern that can match multiple
edges in case of a merge. The solution employed is that the
data is merged before the transfer function of the merging
node is applied. Monotone frameworks require a complete

223

SLE’17, October 23–24, 2017, Vancouver, Canada Jeff Smits and Eelco Visser

lattice instance1 (⊤,⊥,⊑,⊔,⊓) for the type L of the dataflow
property, and uses the least-upper bound ⊔ at merge points
in the control flow. FlowSpec does the same by requiring a
lattice instance for a property that uses control flow edge
patterns. In our examples the MaySet and MustSet are lattice
instances that use the Set type:
prop Live : MaySet string
prop Available : MustSet term (allExprs program)

A MaySet performs set unions at control flow merge points
and compares with non-strict subset inclusion. A MustSet
uses intersection and non-strict superset comparison. It re-
quires a bottom element to be used in the analysis, where
that bottom element is the full set of possible values in the
analysis. In this case we use a function that gathers all ex-
pressions from the entire input program. The MaySet does
not need this extra argument because the bottom element of
the lattice is the empty set.

In Figure 7 we show the Monotone Frameworks instance
of Available Expressions. This analysis is a must analysis, as
seen in the top-left where the lattice of L is defined. It is a
forward analysis, which uses the normal control flow, and
starts at the start of the graph with no available expressions.
Since the analysis is classical, we can define the transfer
function in terms of gen and kill sets. An assignment to x
kills all available expressions that use x . Any expression
generates new available expressions.

For comparison, we also provide the FlowSpec specifica-
tion of Available Expressions in Figure 8. Here instead of
filtering all expressions from the program to build a kill set,
we directly filter the set of available expressions. Note that
we reuse Reads here, which was first used in Live Variables.

Apart from split and merges, control flow graph can also
have cycles. To obtain a valid, terminating analysis, the trans-
fer functions fℓ need to be monotone increasing with respect
to the lattice. This allows a monotone framework to calculate
cycles to a fixed point. To make sure this calculation termi-
nates, the lattice must adhere to the ascending chain condi-
tion. In other words, the lattice must have a finite height.
Together the Monotone Frameworks components can be
used to give a formulaic description of the Analysis:

Analysis◦ (ℓ) =
⊔ {

Analysis• (ℓ
′) | (ℓ′, ℓ) ∈ F

}
⊔ ιℓE

where ιℓE =



ι if ℓ ∈ E
⊥ if ℓ < E

Analysis• (ℓ) = fℓ (Analysis◦ (ℓ))

Again, the open dot is the analysis result before the effect of
ℓ, and the closed dot is for after the effect of ℓ.

A trivial fixed point for our formulas is ∀ℓ.Analysis◦ (ℓ) =
⊤ = Analysis• (ℓ). ⊤ is the value of L that reads as “could be
anything”, the coarsest approximation available. Although
1Technically bounded meet-semilattices are sufficient, which do not require
a top element.

L P (AExp)
⊑ ⊇⊔ ⋂
⊥ AExp(Prog)
ι ∅

E {init(Prog)}
F flow(Prog)

fℓ (l) = (l \ kill([B]ℓ)) ∪ дen([B]ℓ)

where [B]ℓ ∈ blocks(Prog)

kill([x := a]ℓ) =
{
a′ ∈ AExp(Prog) | x ∈ FV(a′)

}
gen([x := a]ℓ) =

{
a′ ∈ AExp(a) | x < FV(a′)

}
gen([b]ℓ) = AExp(b)

Figure 7. Available Expressions instance for Monotone
Frameworks. Prog is the entire program, blocks collects all
labelled blocks, FV collects all free variables, init gives the
initial label, and flow gives the control flow of the argument.

Available Assign(n, e) ← p = result

where exprs = Available p + SubExprs e

result = { expr | expr in exprs ,

!(contains n (Reads expr)) }

Available t ← p = Available p + SubExprs t

Figure 8. Available Expressions specification in FlowSpec

some approximation is necessary to keep the analysis decid-
able, we can usually do better than ⊤ everywhere. The fixed
point of the Analysis that we want is the least fixed point.
This fixed point has enough information to be valid, with as
little approximation as necessary. Of course the accuracy of
this fixed point is still dependent on the choice of lattice L
and transfer functions f .
In the original work [Kam and Ullman 1977] the dual

notion with meets (greatest lower bounds) and greatest fixed
points was used. There, the authors give the Meet Over
all Paths (MOP) as the desired solution, but show that this
solution can be undecidable to calculate. In cases where is
can be calculated, the greatest fixed point coincides with
it, in cases where it is undecidable, the greatest fixed point
safely approximates the MOP solution [Nielson et al. 2005,
sect. 2.4.2].

Monotone Frameworks notation recap To summarise,
we need the following ingredients:

1. A finite flow, F ∈ P (Lab × Lab).
2. Labels ℓ ∈ Lab, which reference program fragments.
3. A set of extremal labels, E ∈ P (Lab), typically the

initial label(s) of the flow.
4. A type L of the dataflow property, which is a complete

lattice of finite height.
5. Monotone transfer functions fℓ for every label ℓ in the

control flow graph.
6. An extremal value, ι ∈ L, for the extremal labels.

224

FlowSpec: Declarative Dataflow Analysis Specification SLE’17, October 23–24, 2017, Vancouver, Canada

M ::= module n (G | D | R)∗ Modules
G ::= cfg p = C (, C)∗ CFG rules
D ::= prop n = τ Property defs
R ::= n P = e where (n = e)∗ Property rules
P ::= p → E Match ahead
| p ← E Match behind
| p Match tree

C ::= E → E (→ E)∗ Chains
E ::= entry | exit | cfg n | n Chain elements
n names
p patterns
e expressions
τ types

Figure 9. The basic grammar of FlowSpec. Literals are on
a grey background.

3 The Semantics of FlowSpec
In this section we present the semantics of FlowSpec. For
brevity we only show rules for the novel parts of the lan-
guage, and useMonotone Frameworks as the semantic model
for the language. We will discuss the language in roughly
the same order as in the last section. Please refer to Figure 9
for a small syntax definition of the language, from which
we will use non-terminals to introduce judgements of the
semantics.

Control flow graphs The special function cfg: term →
cfg is defined case-wise with AST patterns. To model the
behaviour of the virtual entry and exit nodes in these rules,
we employ a constraint based semantics, given in Figure 10.
The smallest set that satisfies these constraints is the control
flow graph that the cfg function gives. We use JpKaℓ

= Γ
to abstract over pattern matching, where p is the pattern,
aℓ is the labeled AST node, and Γ is the environment with
bindings that come from the match. The extremal labels are
all possible, valid bindings of ℓ◦ and ℓ• for [rulei] where aℓ
is the whole program.

In general the two labels left of the turnstile are the virtual
entry and exit labels, which are mostly left to be inferred by
the rules. The chain rule [noedge] connects the labels in a
chain by using an inference variable as a label to connect the
two judgements. The chain rule [edge] connects the labels by
using two inference variables and adding an edge between
these variables to the graph.

For the chain element rules [en] and [ex] we assume that
entry nodes are only on the left-most end of a chain, and exit
nodes are only on the right-most end of a chain. The entry
and exit rules simply equate the two labels left of the turnstile,
without putting any constraints on the two labels. The [lab]
rule looks up the label of the AST node, and requires that
both labels left of the turnstile are equal to this label. This
forces the [edge] rule to be used between two AST nodes,
resulting in actual edges in the constraints. Lastly the [cfg]
rule handles the recursive call of cfg, where it will use any

Cfg rule constraints ℓ, ℓ ⊢ JGKaℓ
⊇ Lab × Lab

JpKaℓ
= Γ ∧ ℓ◦, ℓ•, Γ ⊢ Ci ⊇ дi ∧ 1 ≤ i ≤ m

ℓ◦, ℓ• ⊢ Jcfg p = C1, . . . ,CmKaℓ
⊇ дi

[rulei]

Cfg chain constraints ℓ, ℓ, Γ ⊢ C ⊇ Lab × Lab

ℓ◦, ℓ, Γ ⊢ E1 ⊇ д1
∧ ℓ, ℓ•, Γ ⊢ E2 → . . . → Em ⊇ д2

ℓ◦, ℓ•, Γ ⊢ E1 → E2 → . . . → Em ⊇ д1 ∪ д2
[noedge]

ℓ◦, ℓ1, Γ ⊢ E1 ⊇ д1 ∧ ℓ1 , ℓ2
∧ ℓ2, ℓ•, Γ ⊢ E2 → . . . → Em ⊇ д2 ∧ д3 = {(ℓ1, ℓ2)}

ℓ◦, ℓ•, Γ ⊢ E1 → E2 → . . . → Em ⊇ д1 ∪ д2 ∪ д3
[edge]

Cfg element constraints ℓ, ℓ, Γ ⊢ E ⊇ Lab × Lab

ℓ◦, ℓ◦, Γ ⊢ entry ⊇ ∅
[en]

ℓ•, ℓ•, Γ ⊢ exit ⊇ ∅
[ex]

Γ(n) = aℓ

ℓ, ℓ, Γ ⊢ n ⊇ ∅
[lab]

Γ(n) = aℓ ∧ ℓ◦, ℓ• ⊢ Jcfg p = c1, . . . , cmKaℓ
⊇ д

ℓ◦, ℓ•, Γ ⊢ cfg n ⊇ д
[cfg]

Figure 10. Semantic constraints of the cfg function defini-
tion in FlowSpec

Transfer function mapping Γ ⊢ R ⇒ F

Γ ⊢ JpKaℓ
= Γ′ ∧ Γ′ ⊢ JB[n nadj := l]K = Γ′′

∧ Γ′′ ⊢ Je[n nadj := l]K ⇒ eλ

Γ ⊢ Jn p ← nadj = e where BKaℓ
⇒ f n

ℓ
(l) = eλ

[transfw]

Γ ⊢ JpKaℓ
= Γ′ ∧ Γ′ ⊢ JB[n nadj := l]K = Γ′′

∧ Γ′′ ⊢ Je[n nadj := l]K ⇒ eλ

Γ ⊢ Jn p → nadj = e where BKaℓ
⇒ f n

ℓ
(l) = eλ

[transbw]

Γ ⊢ JpKaℓ
= Γ′ ∧ Γ′ ⊢ JBK = Γ′′

∧ Γ′′ ⊢ JeK ⇒ eλ

Γ ⊢ Jn p = e where BKaℓ
⇒ f n

ℓ
(l) = eλ

[trans]

Figure 11. Mapping of transfer functions in FlowSpec to
Monotone Frameworks

cfg rule from the program which matches the AST node that
the variable refers to.

Transfer functions Transfer functions for properties come
from the property rules in FlowSpec. These rules define
Analysis• (ℓ) in terms of Analysis• (ℓ′). However, there can
be multiple matching edges, multiple ℓ′. Therefore, we use

225

SLE’17, October 23–24, 2017, Vancouver, Canada Jeff Smits and Eelco Visser

D ::= . . . definitions
| type n = n τ ∗ (| n τ ∗)∗ Type definitions
| fun n ((n: τ))∗ = e Function definitions
| lattice n (τ | (n: τ))∗ where l∗ Lattice definitions

l ::= type = τ | lub n n = e | leq n n = e Lattice components
| bottom = e | top = e | glb n n = e

Figure 12. The types and function part of FlowSpec’s gram-
mar. Literals are on a grey background.

Analysis◦ (ℓ) =
⊔

(ℓ,ℓ′)∈F Analysis• (ℓ′) for recursive calls in-
stead. This means that we can map our property rules onto
mathematical transfer functions, which is what we do in
Figure 11. Again, we abstract over pattern matching, and
here we also abstract over the execution of the property rules
themselves. We consider these rule bodies as polymorphic
lambda calculus à la Hindly-Milner. There may be calls to
other properties inside one being defined, as long as there
are no cyclic dependencies between properties.
We use F for the transfer function space and B for the

bindings in the where clause. The property rules are trans-
lated by pattern matching on the AST, then substituting all
recursive calls with l , the argument name of the transfer
function, and finally translating the functional code into a
single mathematical expression.
Lattices Users of FlowSpec can define their own algebraic
data types and lattice definitions on these types. Of the 5-
tuple (⊤,⊥,⊑,⊔,⊓), ⊓ and ⊤ are not actually used by the
implementation and may be left out of the lattice definition.
The other three elements are called bottom, leq and lub.
The grammar for this part of the language can be found in
Figure 12. The lattice definition contains an associated type
to that it can be used in any place where a type can be used.
We provide an example of a constant propagation lattice
in Figure 13. Lattices are required in the type position of a
dataflow property definition, unless the dataflow property
rules are based purely on AST matching and do not use the
control flow graph. In that case the property is similar to a
tabulated function.
Built-in data types and functions FlowSpec has the
built-in types Set, Map and List, and a number of built-in
functions on these types. The MaySet and MustSet defini-
tion do not need to be built in, these can be defined as part
of the standard library.

4 Implementation
Our prototype implementation of FlowSpec is implemented
in, and integrated with the Spoofax [Kats and Visser 2010]
LanguageWorkbench. At the time of writing the prototype is
incomplete, therefore we do not claim this as a contribution
of this paper. However, we can describe the main component
of the implementation, which is the worklist algorithm de-
rived from the one for Monotone Frameworks [Kildall 1973].
In Figure 14 we present the algorithm in pseudo code.

type ConstProp =

| Top

| Const int

| Bottom

lattice Const where

type = ConstProp

lub l r = match (l,r) with

| (Top , _) ⇒ Top

| (_, Top) ⇒ Top

| (Const i, Const j) ⇒ if i == j

then Const i else Top

| (_, Bottom) ⇒ l

| (Bottom , _) ⇒ r

bottom = Bottom

leq l r = lub l r == r

Figure 13. A constant propagation type and lattice in
FlowSpec for Live Variables. Although the ⊔ and ⊑ opera-
tions may be derived from each other, we currently require
both to be defined.

for Prop in topologically ordered Properties:

if Prop.direction = forward:

F ′ := F

else:

F ′ := F.flipEdges ()

for ℓ in F ′:
if ℓ in F ′.E:

Prop◦(ℓ) := ι
else:

Prop◦(ℓ) := ⊥

W := E

while W is not empty:

(ℓ, ℓ′) = W.pop()

if f Prop
ℓ

(Prop◦(ℓ)) @ Prop◦(ℓ
′):

Prop◦(ℓ
′) :=

fℓ (Prop◦(ℓ)) ⊔ Prop◦(ℓ
′)

for (ℓ′, ℓ′′) in F ′:
W.push(ℓ′′)

for ℓ in F ′:
Prop•(ℓ) := f Prop

ℓ
(Prop◦(ℓ))

Figure 14. Worklist algorithm used in the implementation

The outer loop uses a topological ordering on all defined
properties to be able to use one property in another prop-
erty’s rules. The first inner loop initialises the property anal-
ysis. The extremal labels E of the control flow graph F ′ are
initialised with the extremal value ι, everything else with ⊥.

226

FlowSpec: Declarative Dataflow Analysis Specification SLE’17, October 23–24, 2017, Vancouver, Canada

The while loop is the main loop. It pops an edge (ℓ, ℓ′) off of
worklist W, and uses the transferred version of the property
at ℓ to see if it would contribute to ℓ′. If so, the transferred
property of ℓ is added to the property for ℓ′ with the least-
upper-bound operator. All edges starting at ℓ′ are added to
the worklist. After the main loop, the final loop uses the
transfer function one more time to calculate the property
just after the effect of each control flow graph node.
Of course this algorithm is simplified for presentation

purposes. We use a topological ordering of the strongly con-
nected components (SCCs) of the control flow graph [Hor-
witz et al. 1987; Jourdan and Parigot 1990]. Within a strongly
connected component the worklist strategy is used to find
a fixed point for that part of the graph. The trade-off is the
cost of calculating the topologically ordered SCCs, to get the
optimal ordering for calculating the property. A number of
strategies can be used to solve the fixed point computation
with the SCC. We currently use a simple worklist algorithm
based on a queue, but are looking into Round Robin algo-
rithms based on the reverse post-order of the depth first
spanning forest of the SCC [Kam and Ullman 1976]. There
are also optimisation opportunities in the choice of data-
structures we use in our implementation, which we intend
to investigate.

5 Evaluation
Weevaluate the expressiveness and conciseness of FlowSpec.
Our two case studies are implementations of dataflow anal-
yses for Green-Marl [Hong et al. 2012], a domain specific
language for graph processing. Our first case study is Live
Variables analysis for Green-Marl, to answer the question:
How well does an analysis in FlowSpec scale, when we go
beyond toy languages?

The second case study is a domain specific analysis that is
particular to Green-Marl. This analysis, called Read-Write
Analysis, is a bottom-up analysis that gathers data access
information for later use in data dependence calculations.
Here we compare our FlowSpec implementation with the
formal specification of the analysis [Smits 2016].

5.1 Live Variables Analysis in Green-Marl
In Section 2 we presented the implementation of Live Vari-
ables analysis in FlowSpec for the While language. The
While language has 4 different statements, each of which
required a separate control flow graph rule, and one more
for the root of the AST. This took just 7 lines of code. Green-
Marl requires 39 control flow graph rules, one for each AST
node up to expressions. The rules span 72 lines of code, ex-
cluding comments and empty lines. This is mostly due to
code style, where we used two lines of code for even a sim-
ple rule. Figure 15 shows a sample of the control-flow graph
code.

cfg Block(statements) =

entry → cfg statements → exit

cfg DeferAssign(lhs , rhs , _) =

entry → rhs → cfg lhs → exit

cfg InReverse(filter , statement) =

entry → cfg filter → cfg statement → exit

cfg InPost(filter , statement) =

entry → cfg filter → cfg statement → exit

Figure 15. A sample of the control flow graph rules for
Green-Marl

Reads IntLit(_) = {}

Reads VarRef(n) = {n}

Reads Not(e) = Reads e

Reads Mul(e1, e2) = Reads e1 + Reads e2

Figure 16. A sample of the Reads rules for Green-Marl

Live VarAssign(n) → s = Live s - n

Live PropAssign(n, p) → s = Live s - p + {n}

Live ElementAssign(n, _) → s = Live s - n

Live this → s = Live s + Reads this

Figure 17. A sample of the Live Variables rules for
Green-Marl

One problem with expressivity that we noticed while writ-
ing these control flow graphs, is that our control flow graph
rules do not support intermediate return statements in pro-
cedures. This is a non-local jump in control flow, where we
need to know the exit label of the procedure that the re-
turn statement is in. We are currently working on a solution
where the control flow graph can depend on name resolution
information, to handle jumps to labels and return statements.
Return statements already resolve to their enclosing proce-
dure, which is used to type check return expressions.
Where conciseness is concerned, we observe that some

language constructs in Green-Marl are similar in form and
function to the point that they have the same control flow
graph. This is illustrated in the two rules for InReverse
and InPost, which are parts of the breadth-first search and
depth-first search constructs respectively. Both consist of
an optional filter expression and a statement. We intend to
add an option to merge these rules into one, where multiple
patterns can be used if they result in the same name bindings.
This would result in the elimination of 16 rules, and as many
lines of code, when we keep the patterns on separate lines.

227

SLE’17, October 23–24, 2017, Vancouver, Canada Jeff Smits and Eelco Visser

Within the Live Variables analysis we use a property
Reads, to extract the set of names that are read in an ex-
pression. This helper property counts 29 rules, one for every
different expression constructor. Each of these rules is short,
simple and on a single line (see Figure 16 for an example).
Again we might merge these rules when we add the feature
of multiple patterns in a single rule. For comparison, the
While example had only 8 rules.

The actual Live variables property only needs 4 rules
(Figure 17). The first 3 rules match left-hand sides of different
assignments in Green-Marl and add variables and whole
properties to the set of live variables. The 4th rule is the
default rule which propagates the live variables from the
successor and adds the currently read variables.

5.2 Read-Write Analysis in Green-Marl
The Read-Write analysis is formally described in 45 rules
[Smits 2016, ch. 4]. Our FlowSpec implementation counts
21 rules and 4 functions. Each function handles a number
of cases that the formal description has separate rules for,
but also handles the cases explicitly that the formal rules
leave implicit. For example, in FlowSpec we use one rule
and one ‘function’ to describe function calls of Green-Marl.
The function takes no arguments, it is merely a definition
of the set of function names that mutate their arguments.
The formal rules handles function calls in 2 rules and the
predefined set of function names.
Our case study of this analysis inspired the sketch of an

extension of FlowSpec that use information on scopes and
names to automatically filter names out of the analysis results
when these go out of scope. Name abstraction rules can be
specified to transform a more complex data-structure that
contains a name into one that does not contain that name,
abstracting it away. Something similar to this was used in
the formal semantics of the analysis, although our FlowSpec
feature is more general. It simplifies a number of complicated
rules, such as the rule for blocks of statements (see Figure 18).

6 Related Work
Wewill shortly discuss the history of Monotone Frameworks
which underlies our work, and some other systems and for-
malisms for implementing dataflow analysis.

Monotone Frameworks Monotone dataflow analysis frame-
works [Kam and Ullman 1977] were first introduced as a
generalisation over Killdall’s lattice theoretic approach to
dataflow analysis [Kildall 1973]. By replacing the distribu-
tivity requirement with a monotonicity requirement for the
transfer function, Kam and Ullman found a way to describe
many more flow problems in a framework with a clear solu-
tion by maximal fixed point. This maximal fixed point can
be iteratively computed with a simple worklist algorithm.

FlowSpec builds on Monotone Frameworks approach to
provide a unified, domain-specific specification language.

prop ReadWriteInfo = Set (name , Mode , Patt)

ReadWriteInfo Block(sts) =

map (\(n1, m, p) →

if contains n1 (Declarations sts)

then None

else match p with

| Name n2 ⇒ if contains n2 (Declarations sts)

then Some (n, m, Random)

else Some (n, m, p)

| _ ⇒ Some (n, m, p))

ReadWriteInfo sts

prop ReadWriteInfo = Set (name , Mode , Patt)

abstract Patt with

| Name _ ⇒ Random

ReadWriteInfo Block(sts) =

ReadWriteInfo sts

Figure 18. The Read-Write analysis rule for blocks of state-
ments in Green-Marl at the top, and the same rule using
the experimental ‘automatic name filtering’ feature at the
bottom.

Attribute grammars The JastAdd system [Ekman and
Hedin 2007] supports attribute grammars [Knuth 1968] ex-
tended with a number of special attributes which allows
a declarative intra-procedural control- and dataflow analy-
sis specification [Söderberg et al. 2013]. In particular, these
are reference attributes [Hedin 2000] for control-flow graph
(CFG) edges, higher-order attributes [Vogt et al. 1989] for
virtual CFG nodes, used for entry/exit of methods, circular
attributes [Magnusson and Hedin 2007] for fixpoints of data-
flow equations, and collection attributes [Magnusson et al.
2007] e.g. for the CFG where there are multiple successors.

In FlowSpec we use virtual entry and exit nodes through-
out our control flow rules, although these are for ease of
specification and are not included in the control flow graph.
We support a number of collections similar to those in col-
lection attributes. Our fixed point calculations on lattices
are similar to those in the circular attributes. We provide a
small functional language for defining more lattices, whereas
JastAdd has an escape hatch to Java to expose more data-
structures and lattice operations. In comparison, JastAdd
is more general purpose and therefore can express more
static analyses, whereas FlowSpec is more domain-specific
to control and dataflow and can express those analyses more
directly.

Silver [Wyk et al. 2010] is another attribute grammar sys-
tem and specification language that supports similar features
to the JastAdd system. For control- and dataflow analysis,
there is dedicated syntax which translates to a control flow
graph and temporal logic formulae (CTL-FV) that are of-
floaded to a model checker (NuSMW). Temporal logic can

228

FlowSpec: Declarative Dataflow Analysis Specification SLE’17, October 23–24, 2017, Vancouver, Canada

express reasoning in terms of time, which can be used to
express dataflow properties in a declarative manner.
The Stratego strategic programming language was ex-

tended with attribute grammars in Aster [Kats et al. 2009].
Aster allows for attribute decorators that allow the user
to program different attribute grammar extensions, which
allows it to support declarative flow analysis similar to
JastAdd.

The Stratego programming language was also directly
applied to dataflow analysis by leveraging its dynamic rules
[Bravenboer et al. 2006]. In this paper the authors apply a
combination of rewrite rules and dynamic rules for dynamic
propagation of information. Dynamic rules can use either
union or intersection to follow control flow that splits and
merges. At the splitting point the dynamic rule is copied to
both sides. In all other places dynamic rules are mutated,
which is not an issue as the rewrite based on the dynamic
information is done immediately. Fixed point calculation can
also be done with a similar choice of union or intersection.

In FlowSpec we treat dataflow analysis as a separate con-
cern that allows us to treat it in domain-specific terms. By
leaving out the transformation concern, we have a simpler,
if less powerful language.

Kiama [Sloane et al. 2014] is a language processing library
in Scala, based on attribute grammars and strategic program-
ming. The interesting property Kiama has over Aster is
the provisions for updating analyses after transformation,
a concern we currently do not addressed in FlowSpec. The
tree transformations done with strategic programming can
invalidate the values of certain attributes that are dependent
on the parents of a tree node (e.g. inherited attributes), or
some other context. To easily combine attribute grammars
with strategic programming, Kiama provides tree-indexed
attribute families. The root of the particular tree is used for
indexing whenever an attribute is context-dependent.

Relational Programming The Doop framework [Braven-
boer and Smaragdakis 2009] uses a Datalog dialect for a
declarative specification of static analyses such as context-
sensitive pointer analysis. In a recent tutorial, Smaragdakis
and Balatsouras explain different techniques specific to
pointer analysis with Datalog examples. These mostly fo-
cus on whole-program, flow-insensitive may-analyses.
Flow-sensitive analyses and must-analyses are significantly
more complex and harder to ensure soundness of [Smarag-
dakis and Balatsouras 2015, p. 46].
The Flix programming language [Madsen et al. 2016]

is a new contender that extends Datalog to a language
with user-defined lattices, and monotonic transfer and filter
functions on these lattices. These allow Flix to express data-
flow analysis with infinite value domains while keeping
guaranteed termination with a unique minimal model; under
the assumption that the user-defined lattices and functions
are defined correctly.

User-defined types and lattices in Flix and FlowSpec are
very similar. FlowSpec benefits from the larger Spoofax
ecosystem, to develop features such as the (experimental)
automatic name abstraction. One may be able to provide
name and scope information along with an input program in
Flix, and use explicit filtering, but to our knowledge there
is no way to automatically filter names that go out of scope.

Meta-programming environments The MPS language
workbench2 has MPS-DF, a special component for definition
of dataflow analyses [Szabó et al. 2016a]. MPS-DF has sup-
port for building dataflow graphs (control-flow graphs with
read and write primitives), and a syntax for writing transfer
and confluence operators. These operators form the ingre-
dients that allows MPS-DF to apply a classical Monotone
Frameworks solution. The analysis can be done in an intra-
procedural fashion by correctly implementing the operators
to abstract over the possible effects of a procedure call, of
inter-procedurally by inlining method calls. To support this
variability, two different dataflow graph builders need to be
implemented for a procedure call element in the AST.

Another MPS related language is IncA [Szabó et al. 2016b],
a DSL for incremental program analysis. This DSL is built
upon the InQuery engine which supports incremental com-
putations using first order logic extended with the least fixed
point operator. The language lends itself well for certain
analyses that can be modelled well with relations. Its lim-
itations are around generating data at runtime that is not
directly connected to the program, such as building intervals
in an interval analysis.
In contrast FlowSpec has no problem with runtime gen-

erated data, but lacks the incremental analysis that makes
IncA so scalable.

Rascal [Klint et al. 2009] provides a facility for con-
trol flow graph construction with DCFlow [Hills 2014], a
domain-specific language. It simplifies the definition of sim-
ple control flow constructions, but does not support abrupt
termination such as exceptions. To implement these con-
structs the user needs to fall back on the DCFlow library in
Rascal. Similarly, the actual implementation of dataflow al-
gorithms on top of a CFG is still done in the Rascal language,
without a special library or framework for the use-case.

7 Conclusion
We have presented FlowSpec, a declarative specification
language for the domain of dataflow analysis. FlowSpec
uses Monotone Frameworks as a semantics model, and we
have presented its semantics as a mapping onto Monotone
Frameworks. We have demonstrated a number of example
specifications in FlowSpec and reported on two case studies
of larger specifications. We also briefly discussed the pro-
totype implementation and a number of details we are still
exploring there.

2https://www.jetbrains.com/mps/

229

https://www.jetbrains.com/mps/

SLE’17, October 23–24, 2017, Vancouver, Canada Jeff Smits and Eelco Visser

Limitations and Future Work Currently we describe
control flow as a purely local function that can be solved
before the start of dataflow analysis. To allow breaks from
loops and jumps to labels we would like to extend the cfg
function, so it may use tree-based properties and name res-
olution to gain access to non-local jump targets. This may
also be used for static dispatched procedure calls, possibly
resulting in rather large control flow graphs.
In general the interaction between names, control- and

dataflow, and types is of interest.We are integrating FlowSpec
in Spoofax, which has domain specific support for name bind-
ing [Konat et al. 2012]. The theoretical foundation for the
newest name binding support [Néron et al. 2015] gives an
interesting model of scope graphs. The combination of scope
graphs and control flow graphs may be enough to fully de-
scribe a program to the point that we no longer need the
abstract syntax tree.

At the same time the constraint language for scope graphs
[van Antwerpen et al. 2016] can also model types of a pro-
gramming language. If we can fully integrate our control-
and dataflow work in this framework we can extend the ex-
pressiveness of the system to have name resolution or types
that depend on control- and dataflow.
We wish to look into safety of the user-defined lattices

and property rules. On lattices of infinite height or with non-
monotone transfer functions, we cannot guarantee termina-
tion of our implementation. There may be opportunities to
generate proof obligations to be proven by the user, or even
pass it an automatic theorem prover. The proof obligations
may also be usable for randomised testing.
Furthermore, we would like to verify the correctness of

control- and dataflow specifications relative to a dynamic
semantics specifications. This would be an extension of the
work on the language designer’s workbench [Visser et al.
2014].
As we mention in our discussion of the prototype imple-

mentation, there are plenty of places where we can optimise
the implementation. To do this in a constructive way we will
first look into profiling and benchmarking the implementa-
tion when it is reasonably complete.

Acknowledgments
We would like to thank Peter Mosses, Guido Wachsmuth
and the anonymous reviewers for their valuable feedback
and suggestions.

This research was partially funded by the NWO VICI Lan-
guage Designer’s Workbench project (639.023.206) and by a
gift from the Oracle Corporation.

References
Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative

specification of sophisticated points-to analyses. In Proceedings of the
24th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2009, Shail Arora and

Gary T. Leavens (Eds.). ACM, 243–262. DOI:http://dx.doi.org/10.1145/
1640089.1640108

Martin Bravenboer, Arthur van Dam, Karina Olmos, and Eelco Visser.
2006. Program Transformation with Scoped Dynamic Rewrite
Rules. Fundamenta Informaticae 69, 1-2 (2006), 123–178. DOI:
http://dx.doi.org/openurl.asp?genre=article&issn=0169-2968&
amp;volume=69&issue=1&spage=123

Torbjörn Ekman and Görel Hedin. 2007. The JastAdd system - modular
extensible compiler construction. Science of Computer Programming 69,
1-3 (2007), 14–26. DOI:http://dx.doi.org/10.1016/j.scico.2007.02.003

J. Gosling, B. Joy, G. Steele, and G. Bracha. 2005. The Java Language Specifi-
cation (third edition ed.). Prentice Hall PTR, Boston, Mass.

Görel Hedin. 2000. Reference Attributed Grammars. Informatica (Slovenia)
24, 3 (2000).

Mark Hills. 2014. Streamlining Control Flow Graph Construction with
DCFlow. In Software Language Engineering - 7th International Conference,
SLE 2014, Västeras, Sweden, September 15-16, 2014. Proceedings (Lecture
Notes in Computer Science), Benoît Combemale, David J. Pearce, Olivier
Barais, and Jurgen J. Vinju (Eds.), Vol. 8706. Springer, 322–341. DOI:
http://dx.doi.org/10.1007/978-3-319-11245-9_18

SungpackHong, Hassan Chafi, Eric Sedlar, and Kunle Olukotun. 2012. Green-
Marl: a DSL for easy and efficient graph analysis. In Proceedings of the
17th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2012, London, UK, March 3-
7, 2012, Tim Harris and Michael L. Scott (Eds.). ACM, 349–362. DOI:
http://dx.doi.org/10.1145/2150976.2151013

Susan Horwitz, Alan J. Demers, and Tim Teitelbaum. 1987. An Efficient
General Iterative Algorithm for Dataflow Analysis. Acta Informatica 24,
6 (1987), 679–694.

Martin Jourdan and Didier Parigot. 1990. Techniques for Improving Gram-
mar FlowAnalysis. In ESOP 90, 3rd European Symposium on Programming,
Copenhagen, Denmark, May 15-18, 1990, Proceedings (Lecture Notes in
Computer Science), Neil D. Jones (Ed.), Vol. 432. Springer, 240–255.

John B. Kam and Jeffrey D. Ullman. 1976. Global Data Flow Analysis and
Iterative Algorithms. J. ACM 23, 1 (1976), 158–171. DOI:http://dx.doi.
org/10.1145/321921.321938

John B. Kam and Jeffrey D. Ullman. 1977. Monotone Data Flow Analysis
Frameworks. Acta Informatica 7 (1977), 305–317.

Lennart C. L. Kats, Anthony M. Sloane, and Eelco Visser. 2009. Deco-
rated Attribute Grammars: Attribute Evaluation Meets Strategic Pro-
gramming. In Compiler Construction, 18th International Conference, CC
2009, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceed-
ings (Lecture Notes in Computer Science), Oege de Moor and Michael I.
Schwartzbach (Eds.), Vol. 5501. Springer, 142–157. DOI:http://dx.doi.org/
10.1007/978-3-642-00722-4_11

Lennart C. L. Kats and Eelco Visser. 2010. The Spoofax language workbench:
rules for declarative specification of languages and IDEs. In Proceedings
of the 25th Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2010, William R.
Cook, Siobhán Clarke, and Martin C. Rinard (Eds.). ACM, Reno/Tahoe,
Nevada, 444–463. DOI:http://dx.doi.org/10.1145/1869459.1869497

Gary A. Kildall. 1973. A Unified Approach to Global Program Optimization.
In POPL. 194–206.

Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. 2009. EASY Meta-
programmingwith Rascal. InGenerative and Transformational Techniques
in Software Engineering III - International Summer School, GTTSE 2009,
Braga, Portugal, July 6-11, 2009. Revised Papers (Lecture Notes in Com-
puter Science), Joao M. Fernandes, Ralf Lämmel, Joost Visser, and João
Saraiva (Eds.), Vol. 6491. Springer, 222–289. DOI:http://dx.doi.org/10.
1007/978-3-642-18023-1_6

Donald E. Knuth. 1968. Semantics of Context-Free Languages. The-
ory Comput. Syst. 2, 2 (1968), 127–145. DOI:http://dx.doi.org/content/
m2501m07m4666813/

230

http://dx.doi.org/10.1145/1640089.1640108
http://dx.doi.org/10.1145/1640089.1640108
http://dx.doi.org/openurl.asp?genre=article&issn=0169-2968&volume=69&issue=1&spage=123
http://dx.doi.org/openurl.asp?genre=article&issn=0169-2968&volume=69&issue=1&spage=123
http://dx.doi.org/10.1016/j.scico.2007.02.003
http://dx.doi.org/10.1007/978-3-319-11245-9_18
http://dx.doi.org/10.1145/2150976.2151013
http://dx.doi.org/10.1145/321921.321938
http://dx.doi.org/10.1145/321921.321938
http://dx.doi.org/10.1007/978-3-642-00722-4_11
http://dx.doi.org/10.1007/978-3-642-00722-4_11
http://dx.doi.org/10.1145/1869459.1869497
http://dx.doi.org/10.1007/978-3-642-18023-1_6
http://dx.doi.org/10.1007/978-3-642-18023-1_6
http://dx.doi.org/content/m2501m07m4666813/
http://dx.doi.org/content/m2501m07m4666813/

FlowSpec: Declarative Dataflow Analysis Specification SLE’17, October 23–24, 2017, Vancouver, Canada

Gabriël D. P. Konat, Lennart C. L. Kats, Guido Wachsmuth, and Eelco Visser.
2012. Declarative Name Binding and Scope Rules. In Software Language
Engineering, 5th International Conference, SLE 2012, Dresden, Germany,
September 26-28, 2012, Revised Selected Papers (Lecture Notes in Computer
Science), Krzysztof Czarnecki and Görel Hedin (Eds.), Vol. 7745. Springer,
311–331. DOI:http://dx.doi.org/10.1007/978-3-642-36089-3_18

Magnus Madsen, Ming-Ho Yee, and Ondrej Lhoták. 2016. From Datalog to
flix: a declarative language for fixed points on lattices. In Proceedings of
the 37th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17,
2016, Chandra Krintz and Emery Berger (Eds.). ACM, 194–208. DOI:
http://dx.doi.org/10.1145/2908080.2908096

Eva Magnusson, Torbjorn Ekman, and Gorel Hedin. 2007. Extending At-
tribute Grammars with Collection Attributes–Evaluation and Applica-
tions. Source Code Analysis and Manipulation, IEEE International Work-
shop on 0 (2007). DOI:http://dx.doi.org/10.1109/SCAM.2007.13

Eva Magnusson and Görel Hedin. 2007. Circular reference attributed gram-
mars - their evaluation and applications. Science of Computer Program-
ming 68, 1 (2007), 21–37. DOI:http://dx.doi.org/10.1016/j.scico.2005.06.
005

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. 2005. Principles
of program analysis (2. corr. print). Springer. DOI:http://dx.doi.org/
computer/theoretical+computer+science/book/978-3-540-65410-0

Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido Wachsmuth.
2015. A Theory of Name Resolution. In Programming Languages and
Systems - 24th European Symposium on Programming, ESOP 2015, Held as
Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2015, London, UK, April 11-18, 2015. Proceedings (Lecture Notes in
Computer Science), Jan Vitek (Ed.), Vol. 9032. Springer, 205–231. DOI:
http://dx.doi.org/10.1007/978-3-662-46669-8_9

Anthony M. Sloane, Matthew Roberts, and Leonard G. C. Hamey. 2014.
Respect Your Parents: How Attribution and Rewriting Can Get Along. In
Software Language Engineering - 7th International Conference, SLE 2014,
Västeras, Sweden, September 15-16, 2014. Proceedings (Lecture Notes in
Computer Science), Benoît Combemale, David J. Pearce, Olivier Barais,
and Jurgen J. Vinju (Eds.), Vol. 8706. Springer, 191–210. DOI:http://dx.
doi.org/10.1007/978-3-319-11245-9_11

Yannis Smaragdakis and George Balatsouras. 2015. Pointer Analysis. Foun-
dations and Trends in Programming Languages 2, 1 (2015), 1–69. DOI:
http://dx.doi.org/10.1561/2500000014

Jeff Smits. 2016. The Static Semantics of the Green-Marl Graph Analy-
sis Language. Master’s thesis. Delft University of Technology. Ad-
visor(s) Guido Wachsmuth. Available at http://resolver.tudelft.nl/uuid:
4f07cbbb-d017-41e8-aba6-8ff0c19f258d.

Tamás Szabó, Simon Alperovich, Markus Völter, and Sebastian Erdweg.
2016a. An extensible framework for variable-precision data-flow analyses
in MPS. In Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, ASE 2016, Singapore, September 3-7,
2016, David Lo, Sven Apel, and Sarfraz Khurshid (Eds.). ACM, 870–875.
DOI:http://dx.doi.org/10.1145/2970276.2970296

Tamás Szabó, Sebastian Erdweg, and Markus Völter. 2016b. IncA: a DSL for
the definition of incremental program analyses. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering,
ASE 2016, Singapore, September 3-7, 2016, David Lo, Sven Apel, and Sarfraz
Khurshid (Eds.). ACM, 320–331. DOI:http://dx.doi.org/10.1145/2970276.
2970298

Emma Söderberg, Torbjörn Ekman, Görel Hedin, and Eva Magnusson. 2013.
Extensible intraprocedural flow analysis at the abstract syntax tree level.
Science of Computer Programming 78, 10 (2013), 1809–1827. DOI:http:
//dx.doi.org/10.1016/j.scico.2012.02.002

Hendrik van Antwerpen, Pierre Néron, Andrew P. Tolmach, Eelco Visser,
and Guido Wachsmuth. 2016. A constraint language for static semantic
analysis based on scope graphs. In Proceedings of the 2016 ACM SIGPLAN
Workshop on Partial Evaluation and ProgramManipulation, PEPM 2016, St.
Petersburg, FL, USA, January 20 - 22, 2016, Martin Erwig and Tiark Rompf
(Eds.). ACM, 49–60. DOI:http://dx.doi.org/10.1145/2847538.2847543

Eelco Visser, Guido Wachsmuth, Andrew P. Tolmach, Pierre Néron, Vlad A.
Vergu, Augusto Passalaqua, and Gabriël D. P. Konat. 2014. A Lan-
guage Designer’s Workbench: A One-Stop-Shop for Implementation
and Verification of Language Designs. In Onward! 2014, Proceedings of
the 2014 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming & Software, part of SPLASH ’14, Portland,
OR, USA, October 20-24, 2014, Andrew P. Black, Shriram Krishnamurthi,
Bernd Bruegge, and Joseph N. Ruskiewicz (Eds.). ACM, 95–111. DOI:
http://dx.doi.org/10.1145/2661136.2661149

Harald Vogt, S. Doaitse Swierstra, and Matthijs F. Kuiper. 1989. Higher-
Order Attribute Grammars. In PLDI. 131–145.

Eric VanWyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. 2010. Silver: An
extensible attribute grammar system. Science of Computer Programming
75, 1-2 (2010), 39–54. DOI:http://dx.doi.org/10.1016/j.scico.2009.07.004

231

http://dx.doi.org/10.1007/978-3-642-36089-3_18
http://dx.doi.org/10.1145/2908080.2908096
http://dx.doi.org/10.1109/SCAM.2007.13
http://dx.doi.org/10.1016/j.scico.2005.06.005
http://dx.doi.org/10.1016/j.scico.2005.06.005
http://dx.doi.org/computer/theoretical+computer+science/book/978-3-540-65410-0
http://dx.doi.org/computer/theoretical+computer+science/book/978-3-540-65410-0
http://dx.doi.org/10.1007/978-3-662-46669-8_9
http://dx.doi.org/10.1007/978-3-319-11245-9_11
http://dx.doi.org/10.1007/978-3-319-11245-9_11
http://dx.doi.org/10.1561/2500000014
http://resolver.tudelft.nl/uuid:4f07cbbb-d017-41e8-aba6-8ff0c19f258d
http://resolver.tudelft.nl/uuid:4f07cbbb-d017-41e8-aba6-8ff0c19f258d
http://dx.doi.org/10.1145/2970276.2970296
http://dx.doi.org/10.1145/2970276.2970298
http://dx.doi.org/10.1145/2970276.2970298
http://dx.doi.org/10.1016/j.scico.2012.02.002
http://dx.doi.org/10.1016/j.scico.2012.02.002
http://dx.doi.org/10.1145/2847538.2847543
http://dx.doi.org/10.1145/2661136.2661149
http://dx.doi.org/10.1016/j.scico.2009.07.004

	Abstract
	1 Introduction
	2 FlowSpec and Monotone Frameworks
	3 The Semantics of FlowSpec
	4 Implementation
	5 Evaluation
	5.1 Live Variables Analysis in Green-Marl
	5.2 Read-Write Analysis in Green-Marl

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

