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Abstract
Context Context-free grammars are widely used for language prototyping and implementation. They allow
formalizing the syntax of domain-specific or general-purpose programming languages concisely and declara-
tively. However, the natural and concise way of writing a context-free grammar is often ambiguous. Therefore,
grammar formalisms support extensions in the form of declarative disambiguation rules to specify operator
precedence and associativity, solving ambiguities that are caused by the subset of the grammar that corre-
sponds to expressions.

Inquiry Implementing support for declarative disambiguation within a parser typically comes with one
or more of the following limitations in practice: a lack of parsing performance, or a lack of modularity (i.e.,
disallowing the composition of grammar fragments of potentially different languages). The latter subject
is generally addressed by scannerless generalized parsers. We aim to equip scannerless generalized parsers
with novel disambiguation methods that are inherently performant, without compromising the concerns of
modularity and language composition.

Approach In this paper, we present a novel low-overhead implementation technique for disambiguating
deep associativity and priority conflicts in scannerless generalized parsers with lightweight data-dependency.

Knowledge Ambiguities with respect to operator precedence and associativity arise from combining the
various operators of a language. While shallow conflicts can be resolved efficiently by one-level tree patterns,
deep conflicts require more elaborate techniques, because they can occur arbitrarily nested in a tree. Current
state-of-the-art approaches to solving deep priority conflicts come with a severe performance overhead.

Grounding We evaluated our new approach against state-of-the-art declarative disambiguation mecha-
nisms. By parsing a corpus of popular open-source repositories written in Java and OCaml, we found that our
approach yields speedups of up to 1.73 x over a grammar rewriting technique when parsing programs with
deep priority conflicts—with a modest overhead of 1% to 2% when parsing programs without deep conflicts.

Importance A recent empirical study shows that deep priority conflicts are indeed wide-spread in real-
world programs. The study shows that in a corpus of popular OCaml projects on Github, up to 17% of the
source files contain deep priority conflicts. However, there is no solution in the literature that addresses effi-
cient disambiguation of deep priority conflicts, with support for modular and composable syntax definitions.
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Towards Zero-Overhead Disambiguation of Deep Priority Con�icts

1 Introduction

Context-free grammars have been established as the main formalism for concisely
describing the syntax of programming languages (e.g., in reference manuals). Yet,
context-free grammar definitions still cause problems when used to generate parsers
in practice. On the one hand, a parser generator may expect a deterministic grammar
that fits a certain grammar class, such as LL or LR. On the other hand, natural and
concise context-free grammars may be inherently ambiguous, more specifically when
considering the subset of the grammar that defines expressions and operators.
Mainstream parser generators, such as YACC [13], extend their grammar formal-

ism with declarative constructs for disambiguation, allowing users to specify the
precedence and associativity of operators. In order to not compromise performance,
under the hood, YACC’s translation of disambiguation rules highly depends on specific
characteristics of LR parsing technology—exploiting LR shift/reduce conflicts—rather
than building upon a generalized solution. Furthermore, YACC does not support the
composition of modular grammar fragments (of potentially different languages).
In contrast, the SDF2 syntax definition formalism [25] allows modular and com-

posable language specifications, providing mechanisms for declaratively specifying
operator precedence and associativity [15, 22]. The semantics for SDF2 disambigua-
tion is parsing independent, but it only addresses ambiguities that are caused by so
called shallow conflicts, i.e., conflicts that can be solved by checking whether a certain
parse node is a direct descendant of another node in the parse tree. However, some
ambiguities that occur in expressions can only be solved by checks in the final tree of
unbounded depth [3, 19]. Such ambiguities are caused by deep priority conflicts.
Several approaches have been proposed to solve deep priority conflicts. Many

of these approaches are based on grammar transformations and thus are parser
independent [2, 3, 19]. However, those techniques typically result in large unambiguous
grammars, which may impact on the performance of the parser and be somewhat
inefficient, as considerable parts of the grammar are not exercised at runtime, even
after parsing many programs [20].
Alternative solutions of so called data-dependent grammars [5] postpone solving of

priority conflicts to parse time. Data-dependent grammars are context-free grammars,
extended with arbitrary computations, parameters, variable binding, and constraints
that can be evaluated at parse time [12]. Data dependent grammars that address
disambiguation of priority conflicts can be generated from a context-free grammar
with disambiguation constructs, but they are fairly complex and arguably hard to read
and understand. The additional complexity comes from the bindings and constraints,
and by the fact that data can be propagated “downwards” and “upwards” at parse
time, when building the parse tree. Finally, data-dependent grammars have not yet
been generalized to solve frequent types of deep priority conflicts such as longest
match or the well known dangling else problem.
This paper proposes a different solution to disambiguate deep priority conflicts

at parse time based on data-dependent contextual grammars. Our approach relies on
lightweight data dependency that does not require arbitrary computation nor variable
bindings at parse time, and instead expresses disambiguation in terms of set-algebraic
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operations that can be implemented scoped and efficiently. The contributions of the
paper are:

We define a lightweight data-dependent extension of the scannerless generalized
LR parsing algorithm for disambiguating deep priority conflicts.
We show that this data-dependent extension yields the same disambiguation as
contextual grammars, an approach that solves deep priority conflicts through
grammar rewriting.
We compare the performance of disambiguation strategies and show that our
lightweight data-dependent disambiguation is up to 1.73 x faster when parsing
programs with deep priority conflicts and has very low overhead for programs
without deep priority conflicts.

We implemented our solution as a modified parser generator for SDF3 [26], which
supports modular and composable syntax definitions. Furthermore, we evaluated
our approach using OCaml, an expression-based language that contains many deep
priority conflicts; and Java, a statement-based language that contains a small number
of deep priority conflicts. Given that deep priority conflicts may occur in about one
in five real-world programs for OCaml [20], we provide a technique that supports
efficient disambiguation of such conflicts, showing that for programs without conflicts,
our approach has a modest overhead of 1% to 2% on parsing time.
The paper is organized as follows: Section 2 details background information on

declarative disambiguation and deep priority conflicts. Section 3 describes data-
dependent contextual grammars. Next, in Section 4 we evaluate our approach by
comparing to disambiguation techniques that rely on grammar transformations. Finally,
we discuss related work in Section 5, before concluding.

2 Disambiguating Priority Con�icts

We start by presenting the notation for grammars, grammar productions and parse
trees that will be used throughout the paper. The remainder of this section then
discusses background on the issue of deep priority conflicts and a grammar rewriting
technique, contextual grammars [19], that addresses the resolution of such conflicts.

2.1 Notation

Grammars A context-free grammar G can be formally defined as a tuple (Σ, N , P)
with the set Σ representing the terminal symbols; the set N consisting of the non-
terminal symbols defined in the grammar; and the set P representing the productions.
When not mentioned, we adopted the letter A to represent arbitrary non-terminals;
the letter X to represent a symbol from Σ∪N ; and Greek letters α, β or γ to represent
a symbol in (Σ∪ N)∗, also known as sentential forms.

Productions We use the same notation for productions as in the syntax definition
formalism SDF3 [26]. A production in a grammar G has the form A = α or A.C = α,
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where C represents a constructor. SDF3 productions may have constructors to specify
the name of the abstract syntax tree node constructed when imploding the parse tree.
A non-terminal and a constructor uniquely identify a production, i.e., a production
A.C = α may also be referred as A.C. Note that SDF3 constructors are orthogonal to
our approach.

Parse Trees A production A.C = X1 ... Xn may be used to construct a tree of form
[A.C = t1 ... tn], with the subtree ti being defined by the symbol Xi. Explicit
subtrees are indicated by their productions using nested square brackets, whereas
arbitrary subtrees and terminal elements that occur as leaves do not require brackets.
For example, the tree [Exp.Add = e1 + [Exp.Mul = e2 * e3]] constructed with a
production Exp.Add = Exp "+" Exp has an arbitrary subtree e1 as its leftmost subtree,
and a rightmost explicit subtree defined by the production Exp.Mul = Exp "*" Exp,
with arbitrary subtrees e2 and e3.

2.2 Background on Deep Priority Con�icts

In context-free grammars of programming languages, ambiguities are often caused by
the subset of the language that contains expressions and operators. To address this
issue, grammar formalisms used in practice support the specification of declarative
disambiguation rules to define operator precedence and associativity among the gram-
mar productions. E.g., in SDF3, a grammar production can have an annotation—either
left, right, or non-assoc—to specify its associativity. SDF3 also supports context-free
priorities, which form a partial order, defining a priority relation between productions.
E.g., the disambiguation rule Exp.Add > Exp.If defines that addition has a higher
priority than conditional expressions.
The most common ambiguities from expression grammars involve the direct combi-

nation of operators with different priorities. These ambiguities are caused by so-called
shallow priority conflicts and can be efficiently solved by subtree filtering [15], i.e.,
disallowing certain kinds of trees to occur as a direct child of others.
A small but complicated-to-solve subset of ambiguities is caused by deep priority

conflicts. Unlike shallow conflicts, deep priority conflicts cannot be filtered by observing
the direct parent-child relationship of nodes within a parse tree. Deep priority conflicts
can occur arbitrarily nested (i.e., in unbounded depth) in a parse tree. In general,
deep conflicts can occur when a low-priority operator shadows a nested higher priority
operator on the left- or rightmost edges along a sub-tree [3, 20]. Deep priority conflicts
are commonly found in the expression parts of grammars of ML-like languages. A
recent empirical pilot study suggests that up to 17% of OCaml source files originating
from popular projects on Github do contain deep priority conflicts [20], raising the
question how such conflicts can be disambiguated efficiently.

Deep priority conflicts are categorized in three classes, according to their nature [19]:
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Listing 1 Expression grammars with various archetypes of deep priority conflicts.

(a) Operator-Style Conflict

1 context-free syntax
2

3 Exp.If = "if" "(" Exp ")" Exp
4 Exp.Add = Exp "+" Exp {left}
5 Exp.Int = INT
6

7 context-free priorities
8

9 Exp.Add > Exp.If
10

11 causes conflict in sentence
12

13 e1 + if(e2) e3 + e4
14

15 with interpretations
16

17 e1 + if(e2) (e3 + e4)
18

19 (e1 + if(e2) e3) + e4

(b) Dangling-Else Conflict

1 context-free syntax
2

3 Exp.If = "if" "(" Exp ")" Exp
4 Exp.IfElse = "if" "(" Exp ")" Exp "else" Exp
5 Exp.Int = INT
6

7 causes conflict in sentence
8

9 if(e1) if(e2) e3 else if(e4) e5 else e6
10

11 with interpretations
12

13 if(e1) (if(e2) e3 else (if(e4) e5 else e6))
14

15 if(e1) (if(e2) e3 else (if(e4) e5)) else e6
16

17 if(e1) (if(e2) e3) else (if(e4) e5 else e6)

(c) Longest-Match Conflict

1 context-free syntax
2

3 Exp.Match = "match" Exp "with" Pat+
4 Pat.Pattern = ID "->" Exp
5 Exp.Int = INT
6

7 causes conflict in sentence
8

9 match e1 with id -> match e2 with p1 p2
10

11 with interpretations
12

13 match e1 with id -> (match e2 with p1 p2)
14

15 match e1 with id -> (match e2 with p1) p2
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Operator-Style Con�icts Operator-style conflicts involve two operators: 1) a prefix
operator1 with lower priority, and 2) a postfix or infix operator with higher priority.2
Listing 1a contains a minimal grammar example, illustrating an operator-style conflict.
In our case, it involves an addition expression that has higher priority than the
conditional expression. Parsing the example sentence on line 13 causes an ambiguity
due to a deep priority conflict and yields two possible interpretations (lines 17 and 19).
In the example, the first instance represents the supposedly correct interpretation,
since the addition to the left of the conditional expression extends as far as possible.
The second and incorrect interpretation cannot be filtered by checking the direct
parent-child relation of parse nodes, since the first addition expression shadows that
the conditional (prefix operator with lower-priority) occurs indirectly nested at the
rightmost position of the second addition (infix operator with higher-priority).

Dangling-Else Con�icts Dangling-else describes a pattern for a deep priority conflict
involving two productions that share the same prefix or suffix, where the shorter
production is (left or right) recursive. Listing 1b illustrates a conflict involving the
Exp.If and Exp.IfElse productions. For the sentence on line 9, a parser cannot
decide where the else branches should be connected. Note that the first interpretation
(line 13) is supposedly the correct one, where the else branches are connected to the
closest if-expressions.

Longest-Match Con�icts Another type of deep priority conflict involves indirectly
nested lists [19]. The example grammar in Listing 1c defines Exp.Match expressions
ending with a list of patterns. However, match expressions can themselves occur
at the end of a pattern. E.g., for the sentence in line 9, the parser cannot decide
whether the pattern p2 belongs to the list of the match e1 (cf. line 15) or the list of the
match e2 expression (cf. line 13). The first interpretation should be preferred if the
list construct (Pat+) itself follows longest match.

2.3 Disambiguating Deep Priority Con�icts with Contextual Grammars

Many disambiguation approaches achieve independence from a particular parsing
technology by relying on grammar rewriting (i.e., transforming an ambiguous context-
free grammar into a context-free grammar that does not contain any priority conflicts).
In the following, we discuss the disambiguation approach of contextual grammars [19]
as a representative example for rewriting-based disambiguation strategies, since our
contribution builds upon it. (An extensive discussion and comparison of related work
on the subject of disambiguation can be found in Section 5).

1We consider the definition of operators used in [19]: prefix operators are defined by right
recursive productions, postfix operators by left recursive productions and infix operators
by productions that are both left and right recursive.

2Operator-style conflicts may also involve lower priority postfix operators, but these are un-
common, as postfix operators usually have higher priority in most programming languages.
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Listing 2 Contextual grammar that solves an operator-style deep priority conflict involving
if and addition expressions in ML-like languages.

1 context-free syntax
2

3 Exp.If = "if" "(" Exp ")" Exp
4 Exp.Add = Exp{Exp.If} "+" Exp {left}
5 Exp.Int = INT
6

7 Exp{Exp.If}.Add = Exp{Exp.If} "+" Exp{Exp.If} {left}
8 Exp{Exp.If}.Int = INT
9

10 context-free priorities
11

12 Exp.Add > Exp.If
13

14 uniquely parses sentence
15

16 e1 + if(e2) e3 + e4

17

18 with interpretation
19

20 e1 + if(e2) (e3 + e4)

Contextual grammars [19] are context-free grammars that can be used to solve deep
priority conflicts. Under the hood, contextual grammars express invalid parse-tree
patterns with respect to the disambiguation rules defined in the grammar. These
patterns can be deeply matched to filter trees that would cause an ambiguity. The
deep pattern matches do not occur at parse-time, but rather are implemented as a
grammar transformation. A “black-list” of forbidden patterns, represented by so-called
contextual tokens drives the recursive rewriting algorithm, restricting which parse trees
a production may produce along the (leftmost or rightmost) positions of sub-trees.

Recursive Rewriting by Example Listing 2 illustrates an example for a contextual
grammar that solves the operator-style conflicts of Listing 1a. A grammar transfor-
mation recursively rewrites the grammar and adds new productions for the symbol
Exp{Exp.If} (lines 7– 8). The rewriting propagates the contextual tokens to all leftmost
and rightmost non-terminals of the newly added production. By using the tokens
to create new non-terminal symbols that implement filters, the rewriting avoids the
construction of invalid trees. According to this grammar, the example sentence in
line 16 now can be unambiguously parsed as shown in line 20. The invalid sentence
(e1 + if(e2) e3) + e4 cannot be parsed anymore, because the addition . . . + e4 that is
parsed with Exp.Add must not have an if-expression on the rightmost position of the
first addition e1 + if(e2) e3.
One issue with the rewriting is that the propagation of constraints might result in

many additional productions in the final contextual grammar, as productions of the
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A.C1 = lmArm … lm'Arm'

A.C2 = …

lmArm.C1 = lmArm … lm'Arm' ∪ rm

lmArm.C2 = …

lm'Arm'.C1 = lm' ∪ lmArm … lm'Arm'

lm'Arm'.C2 = …

…

lm'Arm' ∪ rm.C1 = …

lm'Arm' ∪ rm.C2 = …

lm' ∪ lmArm.C1 = …

lm' ∪ lmArm.C2 = …

Figure 1 Generalized recursive propagation of contextual tokens in contextual grammars.

original grammar need to be duplicated (recursively) for each new contextual symbol.
While the previous example is relatively concise, the general case is not.

Recursive Rewriting in General Formally, a contextual symbol lmArm is a regular non-
terminal A that is uniquely identified by the tuple (lm, A, rm), where lm and rm are
sets containing contextual tokens. For brevity we omit lm or rm respectively when
the set is empty. The set lm stores unique references to productions that are not
allowed to occur in any, possibly deeply nested, leftmost node of the tree defined
by the contextual symbol lmArm. Similarly, the productions referenced in the set rm
cannot be used to construct any, possibly deeply nested, rightmost node of the tree
defined by lmArm. Finally, the tree for the symbol A itself cannot be constructed using
any of the productions referenced in lm and rm.
Figure 1 highlight the general case of how productions are recursively rewritten.

The starting point are the first two productions A.C1 and A.C2, where the production
A.C1 contains deep priority conflicts, as indicated by the contextual symbols on the
right-hand side of the production. For each unique contextual symbol, the productions
for the symbol A need to be duplicated excluding the productions in the sets lm and
rm, while propagating the contextual tokens accordingly. In the second pair of rules in
the grammar, new productions are created for the symbol lmArm assuming that C1 and
C2 are not in the sets lm and rm, and the set rm is propagated to the rightmost symbol
of that rule (cf. dotted arrow). When propagating the set containing the rightmost
contextual tokens rm to the rightmost symbol of this rule, a new unique contextual
symbol lm′Arm′ ∪ rm is generated, causing a ripple effect: new productions need to
be recursively generated for the new symbol as well (cf. the dashed arrows). The
same ripple effect might occur for the symbol lm′ ∪ lmArm′ and for any other unique
contextual symbol resulting from the propagation of contexts.
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Contextual grammars can correctly disambiguate all previously discussed conflicts,
however at a high cost. For expression-based languages with many deep priority
conflicts—such as OCaml—the grammar can get about three times bigger [19]. In
the case of contextual grammars, the duplication is necessary to solve deep conflicts,
however, many productions are not exercised in practice, even after parsing a large set
of programs [20]. The duplication directly introduces a performance penalty, causing
larger parse tables, and longer parse times in practice.
Our aim is to avoid the blow-up in productions caused by grammar transformations,

without giving up the correctness properties guaranteed by contextual grammars. In
the next section we illustrate how the underlying concepts of contextual grammars
can be repurposed to disambiguate deep priority conflicts efficiently at parse time.

3 Data-dependent Contextual Grammars

In this section, we focus on declarative disambiguation techniques that are more gen-
eral than, for example, YACC’s approach, in order to support modular and composable
syntax definitions. In particular, we illustrate how low-overhead disambiguation can
be implemented in SDF3 [26] with a scannerless generalized LR parser (SGLR) [24].
Figure 2 highlights the different stages in the context of parser generation using

SDF3 and parsing in SGLR. First, a normalized3 SDF3 grammar is first transformed by
recursive rewriting into a contextual grammar, which contains additional productions
to remove deep priority conflicts (cf. Section 2.3). Second, the parse table generator
produces a parse table given the contextual grammar, solving shallow priority con-
flicts directly when constructing the table, by filtering goto-transitions according to
the priorities specified in the grammar [22]. Afterwards, the SGLR parser uses the
generated parse table for processing arbitrary input programs. The parser may use
other disambiguation mechanisms at parse time to address, for example, ambiguities
in the lexical syntax using reject productions [24]. The SGLR parser returns a compact
representation of a parse forest that contains all trees that were derived when parsing
an input program. As a final step, a (post-parse) disambiguator may still remove
invalid trees from the parse forest according to given constraints.
According to Figure 2, we can identify four different stages when disambiguation of

priority conflicts can occur: (1) before parse table generation, (2) at parser generation,
(3) at parse time, and (4) after parsing. Post-parse disambiguation is conceptually the
most expensive approach, since ambiguities can grow exponentially with the size of
the input [10]. Disambiguation should preferably occur in the first three identified
stages of disambiguation (i.e., avoiding the construction of invalid trees beforehand).
Nevertheless, disambiguating early in the pipeline does not necessarily guarantee the
best performance either, as we will discuss next.

3 SDF3 grammars are normalized to handle lexical and context free syntax declarations,
derive additional productions for symbols that represent lists or optionals, insert optional
layout in between context-free symbols, and expand priority groups and chains.
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parser

input
normalized
grammar

contextual
grammar

parse table 
generator

1

3 trees

2

4

parse
table

Figure 2 Parsing a program with a scannerless generalized parser, and the times when
disambiguation might occur.

When to Disambiguate (Deep) Priority Con�icts? Disambiguating priority conflicts by
grammar rewriting occurs before parse table generation. Rewriting techniques have
the advantage that the remainder of the parser generation and parsing pipeline can
operate oblivious of priority conflicts. Especially for resolving deep priority conflicts,
grammar rewriting unfortunately adds many productions for forbidding conflicting
patterns and may result in large grammars that negatively impact performance.
Disambiguating conflicts during parse table generation does not require any gram-

mar rewriting and can be achieved by modifying the LR parse table generator. In a
scannerless parser, disambiguation at parse table generation can only resolve shal-
low priority conflicts, requiring that deep priority conflicts are addressed earlier or
later [19].
As noted previously, using post-parse disambiguation filters to solve priority conflicts

can be inefficient in practice, because the number of ambiguities in expressions can
grow exponentially with the size of an expression. Hence, a post-parse filter would
have to traverse a large number of trees in the parse forest to filter invalid trees.
According to the reasoning above, in the next sections we will explore a solution

to disambiguate deep priority conflicts efficiently at parse time, while keeping the
disambiguation of shallow conflicts when generating the parse table.

3.1 Disambiguation of Deep Con�icts with Lightweight Data Dependency

Data-dependent grammars [12] extend context-free grammars allowing parameterized
non-terminals, variable binding, evaluation of constraints, and arbitrary computation
at parse time. Data-dependent grammars can be translated into stack-based automata,
i.e., push-down automata with environments to track data-dependent parsing states.
For example, consider the productions:

Iter(n).Conc = [n >= 1] Iter(n - 1) A
Iter(n).Empty = [n == 0] ε

In the example above, the non-terminal Iter is parameterized by an integer n, which
indicates the length of the iteration over the non-terminal A. The constraint [n >= 1]
is checked before trying to parse Iter(n - 1) A, i.e., if n≥ 1 the first production is
used, otherwise, the second.
Purely data dependent grammars are powerful enough to disambiguate priority

conflicts of grammars for programming languages at parse time [5]. They allow
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resolution of possible priority conflicts in the grammar by means of constraints that
forbid the creation of invalid trees. Nevertheless, just relying on data-dependency
might negatively impact the performance of the parser, especially when parsing files
that are free of priority conflicts. For that reason, we selectively use a lightweight
form of data-dependency to solely solve deep priority conflicts, without requiring
variable bindings or arbitrary computations at parse time.

Leveraging Data-Dependency to Avoid Duplicating Productions Contextual grammars
(cf. Section 2.3) can be treated as pure context-free grammars, if we consider that every
unique contextual symbol specifies a new non-terminal. Transforming a contextual
grammar into a context-free one, occurs by duplicating productions (recursively) for
each unique contextual symbol.
Without duplicating the productions, a contextual grammar would have exactly

the same shape and number of productions as the original grammar, since contextual
symbols consist of essentially annotated non-terminals that originate from an analysis
phase. Without rewriting, the grammar itself is still ambiguous, but the inferred
contextual tokens that occur in the grammar can be reused to solve deep priority
conflicts at parse time.

Bottom-up Constraint Aggregation instead of Top-Down Rewriting Instead of propa-
gating the constraints in the form of contextual tokens in the grammar productions,
which may result in new contextual symbols and consequently new productions, we
propagate the data to which the constraints are applied at parse time. Since the
SGLR parser constructs trees bottom-up, we propagate the information about the
productions used to construct the possibly nested leftmost and rightmost nodes of
a tree bottom-up as contextual tokens during tree construction. Each node of the
parse tree of the adapted data-dependent SGLR parser contains two additional sets
that indicate the productions used to construct its leftmost and rightmost (nested)
subtrees, respectively. For every node, the set representing the leftmost contextual
tokens is the union of the the production used to construct the current node with the
leftmost set of the leftmost direct child. Similarly, the set representing the rightmost
contextual tokens is the union of the production used to construct the node itself with
the rightmost set of contextual tokens of the rightmost direct child. Note that only
productions that can cause deep priority conflicts are added to the sets of contextual
tokens; the number of tokens propagated is significantly lower than the total number
of productions, even for highly ambiguous grammars. (The largest number of con-
textual tokens—33—was required for OCaml, which contains a highly ambiguous
expression grammar.)

Data-Dependent Contextual Token Propagation by Example The tree in Figure 3a for
the sentence INT + if INT was parsed using the data-dependent contextual grammar
of Listing 3. Since Exp.If is the only production that appears in the contextual tokens
in the grammar, it is the only token that needs to be propagated upwards. Because
the if-expression occurs as a direct right subtree of the addition, only its rightmost set
of contextual tokens is propagated upwards, discarding the leftmost set of tokens.
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if

Exp

INT

ExpINT

Exp

Exp

+

Exp.If

Exp.IfExp.If

(a) Propagation by Example

prod(t)

tknk rmknklmknk
tk0

rm10

t

…t10 

…

t1n1

…

lm10 rm1n1lm1n1

rmk0lmk0

prod(t) rm1n1lm10 ∪ ∪

… …

(b) Schema of Generic Propagation

Figure 3 Propagation of contextual tokens in contextual grammars with data-dependency.

Listing 3 A (truncated) succinct syntax for a data-dependent contextual grammar with
if-expressions, to be used for illustrating concise parse tree examples.

1 context-free syntax
2

3 Exp.If = "if" Exp
4 Exp.Add = Exp{Exp.If} "+" Exp {left}
5 Exp.Int = INT
6

7 context-free priorities
8

9 Exp.Add > Exp.If

Data-Dependent Contextual Token Propagation in General Consider the tree schema
indicating the propagation of possible contextual tokens of Figure 3b. Assuming that
the tree has depth k, the tokens will be propagated bottom-up through the leaves
until reaching the root t. However, for a leaf node tk0, its set of contextual tokens
consist only of prod(tk0) (the production used to construct tk0). As we will discuss
in Section 3.3, we only propagate contextual tokens that occur in the contextual
grammar, i.e., if prod(tk0) cannot cause a deep priority conflict, the set is in fact, an
empty set. Thus, besides limiting the propagation to the depth of the trees being
constructed, for grammars with few conflicts, only a small amount of data is actually
propagated when constructing the tree.

Customization of Parsing Algorithm The algorithm for the data-dependent scanner-
less generalized LR parser requires only a few changes in the original SGLR algorithm
shown in [24]. More specifically, the algorithm needs to propagate contextual tokens
corresponding to the productions used to construct the leftmost and rightmost (pos-
sibly nested) subtrees (t.LeftmostTokens and t.RighmostTokens),⁴ and to check

4 In the original SGLR algorithm, creating a parse tree node consisted simply of applying a
production to the trees collected when calculating the path for the reduce action. In the
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Listing 4 Pseudocode for the modified DO-REDUCTIONS and CREATE-TREE-NODEmethods
from the original SGLR, in the implementation of the data-dependent SGLR.

1 function DO-REDUCTIONS(Stack st, Production A.C = X1...Xn)
2 for each path from stack st to stack st0 of length n} do
3 List<Tree> [t1, ..., tn] = the trees from the links in the path from st to st0

4 for each X i such that X i is a contextual symbol lmX rm do
5 if t i.LeftmostTokens ∩ lm 6= ; or t i.RightmostTokens ∩ rm 6= ; then
6 return
7 end if
8 end for
9 REDUCER(st0, goto(state(st0), A.C = X1...Xn), A.C = X1...Xn, [t1, ..., tn])
10 end for
11 end function

1 function CREATE-TREE-NODE(Production A.C = X1...Xn, List<Tree> [t1, ..., tn])
2 Tree t = [A.C = t1, ..., tn]
3 t.LeftmostTokens = t1.LeftmostTokens ∪ A.C
4 t.RightmostTokens = tn.RightmostTokens ∪ A.C
5 return t
6 end function

the constraints when performing reduce actions. We show the pseudocode for the
modified methods of the original SGLR in Listing 4. Note that because we leverage
the analysis done by contextual grammars, our data-dependent SGLR algorithm can
solve the same types of deep priority conflicts that can be solved by regular contextual
grammars, i.e., operator-style, dangling else and longest match. Furthermore, be-
cause we propagate the data representing possible conflicts at parse time, and enforce
the constraints when performing a reduce operation, the grammar does not require
modifications that increase its number of productions.

3.2 Scannerless Generalized LR Parsing with Data-Dependent Disambiguation

To illustrate how our implementation of a data-dependent SGLR performs disambigua-
tion at parse time, consider the scenario when parsing the input INT + if INT + INT,
which contains an operator-style deep priority conflict, using the data-dependent
contextual grammar shown previously. After parsing INT + if INT, the parser reaches
a state with a shift/reduce conflict in the parse table shown in configuration (I) from
Figure 4. Before this point, SGLR performs actions according to the parse table to
construct the single stack shown in this configuration, with the links between states
(represented by the boxes) containing the trees that have been created so far, or the
terminal symbols that have been shifted.
Note that in this first configuration, when reaching the conflict in the parse table,

a parser that uses the disambiguation mechanism from YACC (see Section 5) can

data-dependent algorithm, the sets of leftmost and rightmost subtrees need to be updated
by propagating the information from the rightmost and leftmost direct subtrees.
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[Exp.If = if [Exp.Int = INT]] Exp.IfExp.If

+ if

shift/reduce
conflict

[Exp.Int = INT] [Exp.Int = INT]

+ if[Exp.Int = INT] [Exp.Int = INT]

reduce! ✔

+ if[Exp.Int = INT] [Exp.Int = INT]

[Exp.Add = [Exp.Int = INT] + [Exp.If = if [Exp.Int = INT]]]

+ if[Exp.Int = INT] [Exp.Int = INT]

[Exp.Add = [Exp.Int = INT] + [Exp.If = if [Exp.Int = INT]]]

+ [Exp.Int = INT]

+

reduce! ✘

shift! ✔

remaining input: + INT

remaining input: + INT

remaining input: + INT

remaining input: 

I

II

III

IV

Exp.If

Exp.If

reduce! ✔

reduce! ✔

Figure 4 The configurations of SGLR when solving a deep priority conflict when parsing
program INT + if INT + INT.

make the decision of which action to take based on the next input token. In this
case, the parser would choose shifting over reducing because the next token in the
input is + and the addition has higher priority over the if expression. However, this
approach of looking at the next input token does not extend to scannerless parsers or
character-level grammars, since the parser operates on characters, and the character
+ might be preceded by layout, or could be the prefix of a different operator.

Thus, instead of making a decision at the configuration (I), a generalized parser
such as SGLR performs both actions in pseudo-parallel, producing an ambiguity if both
actions lead to a successful parse. First, SGLR performs all possible reduce actions,
which may result in the creation of different stacks. That is, the parser continues by
forking a new stack, adding a link to the original one, creating a graph structured
stack. This occurs at the configuration (II), as a reduce action has been performed to
construct the tree:
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[Exp.If = if [Exp.Int = INT]]

Because the production used to construct the tree appears in the rightmost set of
contextual tokens of the contextual symbol Exp{Exp.If} in the grammar, the tree is
constructed with the sets of leftmost and rightmost tokens containing Exp.If.
As the parser can still perform another reduce action from configuration (II), it does

so, reaching configuration (III). Using the tree for the if expression, SGLR creates the
following tree, by reducing using an Exp.Add production:

[Exp.Add = [Exp.Int = INT] + [Exp.If = if [Exp.Int = INT]]]

Note that since the tree for the if expression is used as the rightmost tree when
applying the reduce action, and this tree has a non-empty set of rightmost contextual
tokens, the set is propagated when creating the tree for the addition.
After shifting the additional symbols from the input, and performing a reduce action

that creates the last [Exp.Int = INT] tree, the parser reaches configuration (IV). At
this point, there is no other symbol to shift, so only reduce actions are left to be
performed. When reducing using an Exp.Add production, there are two possible paths
from the state at the top at the stack. The first path, at the top of the graph, creates
a tree corresponding to the addition of two integers, which does not contain any
deep priority conflict. The second path, at the bottom, contains a conflict since the
set of rightmost tokens for the first tree intersects with the rightmost set of contextual
tokens for the contextual symbol Exp{Exp.If} in the Exp.Add production. Thus, the
data-dependent SGLR uses this information to forbid the reduce action on the path at
the bottom. By doing that, it produces only a single tree, solving the deep priority
conflict.

3.3 Performance Optimizations

As shown in the algorithm for the data-dependent SGLR, the operations necessary to
perform disambiguation of deep priority conflicts consist of set-algebraic operations
such as union (for data propagation) and intersection (for constraint checking). To
optimize our solution, we first map all productions that occur in the sets of contextual
tokens of contextual symbols from the grammar to a bitset, limiting the amount of data
that needs to be propagated. Thus, if a certain production belongs to a set of tokens,
its corresponding bit is set to 1, or to 0, otherwise. Using this approach, constraint
checking and data propagation can be achieved at a very low cost by performing
bitwise operations on these bitsets. With such optimization we were able to achieve
near zero-overhead when comparing our data-dependent approach and the original
SGLR, for programs that do not contain deep priority conflicts, as we will show in the
next section.
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4 Evaluation

In this section, we evaluate our approach of declarative disambiguation for solving
deep priority conflicts, by applying it to a corpus of real programs. We are interested
in answering the following research questions:

RQ1 For files that do not contain deep priority conflicts, how much overhead is
introduced by data-dependent contextual grammars?

RQ2 For files that do contain deep priority conflicts, how do data-dependent contextual
grammars perform when solving such conflicts, in comparison to related work?

In order to tackle the aforementioned research questions, it is essential to partition
a data set in files that are free of deep priority conflicts, and files that are known to
have deep priority conflicts. We re-use a corpus of the top-10 trending OCaml and
Java projects on GitHub. The corpus was qualitatively analyzed by Souza Amorim,
Steindorfer, and Visser [20], listing the types of priority conflicts each file from
the projects contains. For both languages we partitioned the files into two groups
according to their analysis results: files are free of deep priority conflicts (and therefore
can be parsed by parsers without sophisticated disambiguation mechanisms), and
files that contain deep priority conflicts. Table 1 lists the projects contained in the
corpus, the total number of source files contained in those project, and the (relative)
number of files with deep priority conflicts for OCaml and Java, respectively. Based
on the research questions listed before, we can formulate our hypotheses:

H1 Due to our lightweight data-dependent disambiguation, we expect single-digit
percentage overhead when parsing files that do not contain deep priority conflicts.

H2 Since disambiguation by grammar transformation produces up to three times
bigger [20] grammars, we expect our lightweight data-dependent disambiguation
to perform significantly better (i.e., higher double-digit percentage improvements).

4.1 Experiment Setup

The benchmarks were executed on a computer with 16GB RAM and an Intel Core
i7-6920HQ CPU with a base frequency of 2.9GHz and a 8MB Last-Level Cache. The
software stack consisted of Apple’s macOS operating system version 10.13.1 (17B48)
and an Oracle’s Java Virtual Machine (version 8u121).
To obtain statistically rigorous performance numbers, we adhere to best practices for

(micro-)benchmarking on the Java Virtual Machine (JVM) as, for example, discussed
in Georges, Buytaert, and Eeckhout [11] and Kalibera and Jones [14]. We measure the
execution time of batch-parsing the corpus of OCaml and Java sources with the Java
Microbenchmarking Harness (JMH), which is a framework to overcome the pitfalls of
(micro-)benchmarking. Since the batch-parsing execution times are expected to be in
terms of minutes—rather than microbenchmarks that execute in milliseconds—we
configured JMH to perform 15 single-shot measurements: i.e., forking a fresh virtual
machine 15 times and measuring the total batch-parsing time including cold startup.

13:16



Luis Eduardo de Souza Amorim, Michael J. Steindorfer, and Eelco Visser

Table 1 Deep Priority Conflicts in OCaml and Java Corpus.

OCaml Project Affected Files Java Project Affected Files

FStar 6 / 160 (3.8%) Matisse 0 / 41 (0.0%)

bincat 5 / 26 (19.2%) RxJava 0 / 1469 (0.0%)

bucklescript 85 / 885 ( 9.6%) aurora-imui 0 / 55 (0.0%)

coq 158 / 417 (37.9%) gitpitch 0 / 45 (0.0%)

flow 52 / 305 (17.0%) kotlin 0 / 3854 (0.0%)

infer 33 / 234 (14.1%) leetcode 0 / 94 (0.0%)

ocaml 112 / 909 (12.3%) litho 0 / 510 (0.0%)

reason 4 / 36 (11.1%) lottie-android 0 / 109 (0.0%)

spec 4 / 40 (10.0%) spring-boot 2 / 3444 (0.06%)

tezos 71 / 149 (47.7%) vlayout 0 / 46 (0.0%)

All 530 / 3161 (16.8%) All 2 / 9667 (0.02%)

For executing the benchmarks, we disabled CPU frequency scaling, disabled back-
ground processes as much as possible, and fixed the virtual machine heap sizes to
10GB for benchmark execution. The benchmark setup was tested and tuned to yield
accurate measurements with relative errors of typically less than 2% of the execution
time. We report the measurement error as Median Absolute Deviation (MAD), which is
a robust statistical measure of variability that is resilient to small numbers of outliers.

4.2 Experiment Results

The results of our experiment are illustrated in Table 2. We first report the precision
of the individual data points. For all the data points, the relative measurement errors
are in the range of 1.0% to 4.1% with a median error of 1.6%; the absolute amounts
are printed in the table next to the benchmark runtimes (cf. column Time (seconds)).

Cost of Disambiguating Deep Priority Con�icts (Hypothesis H1) Column Cost shows
how the parser’s performance is affected by supporting the disambiguation of deep
priority conflicts. The cost measurements were performed solely for the data sets that
are guaranteed to be free of deep priority conflicts, since we use a parser without
deep priority conflict disambiguation as a baseline. The results show that the cost
of disambiguation with data-dependency is between 1% (OCaml) and 2% (Java),
supporting Hypothesis H1. Note that the result for OCaml is not statistically significant,
i.e., the 1% difference may as well be in the margin of error. For the Java case, the
result is statistically significant, however the error intervals are very close and almost
overlap. We conclude that Hypothesis H1 is supported by our experiment: the cost of
declarative disambiguation is clearly below 10%.
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Table 2 Benchmark Results when parsing the OCaml and Java Corpus.

Language Data Set Disambiguation Time (seconds) Speedup Cost

Java with
conflicts

data-dependent 0.18 ± 0.00 1.29 x —

rewriting 0.23 ± 0.00 1.00 x —

Java
without

conflicts

data-dependent 270.64 ± 1.28 1.73 x 1.02 x

rewriting 467.20 ± 4.03 1.00 x 1.77 x

none 264.20 ± 2.36 — 1.00 x

OCaml with
conflicts

data-dependent 80.60 ± 1.48 1.54 x —

rewriting 123.75 ± 1.02 1.00 x —

OCaml
without

conflicts

data-dependent 89.82 ± 0.51 1.46 x 1.01 x

rewriting 130.71 ± 0.55 1.00 x 1.48 x

none 88.58 ± 0.98 — 1.00 x

Data-Dependent Disambiguation versus Grammar Rewriting (Hypothesis H2) Column
Speedup of Table 2 shows the performance improvements of data-dependent dis-
ambiguation over disambiguation via grammar rewriting (baseline). In all tested
configurations, data-dependent disambiguation speeds-up from 1.29 x to 1.73 x, reduc-
ing batch parse times considerably. E.g., parse time for the conflict-free Java corpus
reduced from 467.20 s to 270.64 s. We conclude that Hypothesis H2 is supported by our
experiment: data-dependent disambiguation outperforms disambiguation via gram-
mar rewriting as discussed in Adams and Might [2] and Souza Amorim, Haudebourg,
and Visser [19].

4.3 Threats to Validity

To counter internal threats to validity, we properly tested the data-dependent imple-
mentation and assured that it produces abstract syntax trees identical to the contextual
grammars. For the data sets that are guaranteed to be free of deep priority conflicts,
we also assured that the resulting parse trees are identical to the trees from the
corresponding non-disambiguating grammar. In all scenarios, we checked that each
resulting parse tree is indeed free of ambiguities, cross-validating the findings from
the empirical pilot study [20] that accompanies the corpus.
To counter external threats to validity, we carefully designed and implemented

our approach to use a lightweight form of data-dependency selectively, solely disam-
biguating deep priority conflicts. The delta to a baseline SGLR parser without support
for disambiguation of deep conflicts is minimal: it requires the addition of a few lines
of code, as shown in Listing 4. Therefore, we are confident that the observed cost
of 1% to 2% for disambiguating deep priority conflicts remains steady, even when
using different or larger data sets. We are also confident that the significance of the
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performance improvement remains clearly observable regardless of the used data
sets, because it is commonly known that grammar rewriting blows-up the grammars
and the resulting parse tables [20], negatively impacting parsing performance. Nev-
ertheless, the size and choice of our corpus arguably remains an external threat to
validity.⁵

5 Related Work

In the following section, we highlight previous work on disambiguation of conflicts
that arise from the declarative specification of operator precedence and associativity
in context-free grammars, grouped by the phase when disambiguation happens.

5.1 Disambiguation by Grammar Rewriting

Ambiguities that arise from operator precedence and associativity can be avoided by
rewriting the grammar to an unambiguous one. In the following, we list declarative
disambiguation techniques that try to automatically derive unambiguous grammars.
Aasa [1] proposes a grammar rewriting technique that addresses priority conflicts

by generating new non-terminals with explicit precedence levels, forbidding the con-
struction of trees that could cause a conflict. The approach addresses shallow conflicts
as well as deep conflicts of type operator-style. Due to a restriction—productions may
not have overlapping prefixes or suffixes—it cannot solve dangling-else conflicts.
Thorup [21] presents a grammar transformation algorithm that constructs an un-

ambiguous grammar, given an ambiguous grammar, and a set of counterexamples
(i.e., illegal parse trees). The resulting grammar encodes the parse trees bottom-up,
while removing grammar symbols that correspond to illegal trees. Thorup’s approach
specifically supports dangling-else, but does not generalize the construction of coun-
terexamples to capture arbitrary deep priority conflicts.
Conceptually similar to Thorup’s idea, Adams and Might [2] propose a grammar

rewriting solution, where invalid patterns are expressed using tree automata [9]. Each
type of conflict should be expressed as a tree automaton, representing the pattern
of the counterexample. Intersecting the counterexample automata with the original
context-free grammar yields an unambiguous grammar as result. The authors address
all conflicts shown in this paper, with the exception of longest match.⁶
Afroozeh, Brand, Johnstone, Scott, and Vinju [3] describe a safe semantics for

disambiguation by grammar rewriting that only excludes trees that are part of an
ambiguity. While their semantics does cover shallow priority conflicts and deep priority
conflicts of type operator-style, it addresses neither dangling-else nor longest match.

5 For the Java data set with conflicts, we would even assume that performance further
improves with a larger data set. Unlike the other data sets, the current Java data set with
conflicts consists of only two files, because deep conflicts are scarce in Java. The small data
set is disadvantaged, because we compare batch-parsing time including cold startup time.

6 Due to the expressivity of tree automata, we assume that longest match could be supported.
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Contextual grammars [19] generalize the approach by Afroozeh, Brand, Johnstone,
Scott, and Vinju [3], by supporting a “safe” semantics for disambiguation of arbi-
trary deep priority conflicts. The authors analyze and address the root causes of
deep priority conflicts. Their grammar analysis yields as a result, combinations of
conflicting productions that may rise to a deep priority conflict. The authors show
that deep conflicts can only occur in specific paths in the parse trees. Illegal patterns
are conceptually described as deep pattern matches, and implemented by means of
recursive grammar rewriting that forbids invalid trees to be constructed. Rewriting
is used solely for solving deep priority conflicts; disambiguation of shallow conflicts
happens at parse table generation.
All related work mentioned above suffers from the same performance issues: large

unambiguous grammars as a result of recursive rewriting, with even larger parse
tables that have a low-coverage of parsing states when parsing programs [20]. By
contrast, our lightweight data-dependent disambiguation technique avoids grammar
transformations and is able to reuse LR parse tables of grammars that do not solve
deep priority conflicts, resulting in high parse table coverage and a low overhead of
1% to 2% for disambiguation. By reusing the grammar analysis results of contextual
grammars, but implementing our mechanism for disambiguation via lightweight
data-dependency, we are able to handle arbitrary deep priority conflicts, including
deep conflicts caused by indirect recursion.

5.2 Disambiguation at Parser Generation

Instead of changing the original grammar, some techniques perform disambiguation of
priority conflicts at parser generation time. Even though these solutions do not require
changing the productions of the original grammar, they might still be restricted to a
certain parser, e.g., by depending on specific characteristics of a parsing technique, or
by requiring modifications in the parser generation algorithm.
YACC [13] resolves ambiguities concerning operator precedence and associativity by

solving shift/reduce conflicts that occur in LR parse tables. Even though the decision
is made dynamically depending on the current lookahead token, the grammar has to
specify the default action to take in the conflicting state, given the precedence of the
operators involved in the conflict specified in the grammar. This technique has two
major drawbacks. First, users have to reason in terms of shift/reduce conflicts, and
annotate the grammar if a shift action should be preferred over reduce, or vice versa, to
resolve conflicts. Second, YACC’s disambiguation does not apply to scannerless parsers,
since it requires knowing the lookahead token for decision making. More specifically,
YACC’s disambiguation does not apply to any parser that relies on character-level
grammars [17, 18, 25], which are useful to avoid issues when composing grammars of
different languages [6, 7].
Klint and Visser [15] propose a semantics for declarative disambiguation based

on disambiguation filters. This semantics has been implemented by SDF2, so invalid
tree patterns can be constructed from SDF2 priority declarations [23], and used in a
disambiguation filter. The implementation relies on a custom LR parse table generator,
as SDF2 parse tables encode goto transitions between states using productions, forbid-
ding transitions that could construct an invalid tree according to the tree patterns.
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Because this semantics only targets conflicts by checking a parent-child relation in a
tree, this solution is not able to solve deep priority conflicts.

5.3 Disambiguation while Parsing

Ambiguities from operator precedence may also be addressed at parse time. Such
approaches have the advantage of using the original (or a slightly modified) grammar
as input, but require adaptations of the parsing algorithm that may cause overhead
when parsing programs that are free of priority conflicts.
Afroozeh and Izmaylova [5] introduce a solution for disambiguating priority con-

flicts on the basis of a full-fledged data-dependent grammar formalism. The authors
implemented their approach in a generalized LL parser named Iguana [4]. Iguana
addresses shallow priority conflicts and operator-style deep conflicts using data-
dependent grammars, but the approach does not extend to dangling-else nor longest
match. Given the experimental setup described in their paper [5], it is not possible to
assess the overhead of solving deep priority conflicts, because no analysis has been
performed on programs free of deep priority conflicts. When solving the shallow
conflicts present in the Java 7 grammar, Afroozeh and Izmaylova’s approach causes,
on average, 5% overhead compared to the unambiguous Java grammar that directly
encodes precedence and associativity. In contrast, in this paper we measure the cost
of disambiguating deep priority conflicts by parsing programs that are known to be
free of deep priority conflicts. Our lightweight data-dependent solution has negligible
overhead to solve deep priority conflicts, furthermore, it is able to address more types
of deep priority conflicts than Iguana.
The ALL(*) parsing algorithm of ANTLR [16] also handles operator precedence

dynamically by means of semantic predicates. Because top-down parsers cannot
handle left-recursive rules, the grammar is first rewritten to eliminate direct recursion
using a technique known as precedence climbing [8]. Next, semantic predicates that
are evaluated at parse time may filter invalid trees according to the order in which
productions are defined in the grammar. The predicates are interwoven in the grammar
productions representing the constraints to avoid producing invalid trees. In our case,
the constraints are encoded in contextual non-terminals, as they indicate the trees
that a non-terminal should not produce as its leftmost or rightmost child. Furthermore,
we assume that the ANTLR solution to disambiguate deep conflicts have a bigger
impact on performance than our lightweight data-dependency, more specifically when
parsing programs without conflicts, as it uses similar techniques to data-dependent
grammars.
Finally, Erdweg, Rendel, Kästner, and Ostermann [10] implemented a disambigua-

tion strategy at parse time for SGLR, to support layout-sensitive languages. The
disambiguation mechanism consists of propagating information about layout when
constructing the parse trees, and enforcing constraints that are defined as attributes
of productions in SDF grammars. While we only propagate information about leftmost
and rightmost subtrees, their approach needs to propagate line and column positions
of all terminal symbols that were used to construct a tree. In our case, we express
constraints using sets of contextual symbols, checking them using set-algebraic op-
erations. By using an optimized bitset representation, our approach achieves near
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zero-overhead when disambiguating deep priority conflicts. In contrast, Erdweg,
Rendel, Kästner, and Ostermann state that their layout-sensitive parsing approach is
practicable with an average slowdown of 1.8 x compared to a layout-insensitive solu-
tion. The authors mix enforcing constraints at parse-time and post-parse, compared
to our solution that solely disambiguates deep priority conflicts at parse time.

6 Conclusions

In this paper, we presented a novel low-overhead implementation technique for
disambiguating deep priority conflicts with data-dependency. The approach was
implemented in a scannerless generalized LR parser, and evaluated by benchmarking
parsing performance of a corpus of popular Java and OCaml projects on Github.
Results show that our data-dependent technique cuts down the cost of disambiguating
deep priority conflicts to 1% to 2%, improving significantly over contextual grammar
rewriting strategies that have an overhead of 48% to 77%, as shown in Section 4. By
using data-dependency selectively for just solving deep priority conflicts, we were able
to reuse the (compact) LR parse tables of grammars that do not disambiguate deep
conflicts, avoiding the typical problems of parse-table blowup of grammar rewriting
strategies. Overall, we showed that declarative disambiguation can indeed be solved
with almost no cost.
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