Migrating Business Logic to an Incremental
Computing DSL: A Case Study

Daco C. Harkes
Delft University of Technology
The Netherlands
d.c.harkes@tudelft.nl

Abstract

To provide empirical evidence to what extent migration of
business logic to an incremental computing language (ICL) is
useful, we report on a case study on a learning management
system. Our contribution is to analyze a real-life project,
how migrating business logic to an ICL affects information
system validatability, performance, and development effort.
We find that the migrated code has better validatability; it
is straightforward to establish that a program ‘does the right
thing’. Moreover, the performance is better than the previous
hand-written incremental computing solution. The effort
spent on modeling business logic is reduced, but integrating
that logic in the application and tuning performance takes
considerable effort. Thus, the ICL separates the concerns of
business logic and performance, but does not reduce effort.

CCS Concepts -« Information systems — Web applica-
tions; Enterprise information systems; « Software and its
engineering — Domain specific languages;

Keywords Incremental Computing, Information Systems,
Domain-Specific Languages

ACM Reference Format:

Daco C. Harkes, Elmer van Chastelet, and Eelco Visser. 2018. Mi-
grating Business Logic to an Incremental Computing DSL: A Case
Study. In Proceedings of the 11th ACM SIGPLAN International Con-
ference on Software Language Engineering (SLE °18), November 5—
6, 2018, Boston, MA, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3276604.3276617

1 Introduction

Information systems are systems for the collection, organi-
zation, storage, and communication of information. Informa-
tion systems aim to support operations, management, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SLE ’18, November 5-6, 2018, Boston, MA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6029-6/18/11...$15.00
https://doi.org/10.1145/3276604.3276617

Elmer van Chastelet
Delft University of Technology
The Netherlands
e.vanchastelet@tudelft.nl

83

Eelco Visser
Delft University of Technology
The Netherlands
e.visser@tudelft.nl

decision-making. In order to do this, the data in information
systems is filtered and processed to create new data: derived
data. Often these information systems contain large amounts
of data and receive frequent updates to this data. The de-
rived data should be updated as base data is updated, and that
should happen fast. However, realizing a high performance
implementation typically requires invasive changes to the
basic business logic in the form of cache and cache invalida-
tion code. Unfortunately, this obfuscates the original intent
of the business logic in an abundance of caching patterns.
These programming patterns are an obstacle to understand-
ing of programs by human readers [14], and thus reduce
validatability. In other words, it is less straightforward to
establish that a program ‘does the right thing’.

Incremental computing languages (ICLs) aim to address
this tension between performance and validatability by au-
tomatically incrementalizing non-incremental specifications.
Since none of the existing ICLs could express business logic
of our information systems concisely, we created IceDust, an
ICL with support for recursive aggregation and composition
of multiple incremental computing strategies.

Contribution To provide empirical evidence to what extent
migration of business logic to an ICL is useful, we report
on a case study on a learning management system: WebLab.
Our contribution is to analyze a real-life project, how mi-
grating business logic to an ICL affects validatability and
performance, and how much effort migration takes.

Audience We target language engineering researchers (in-
terested in empirical data justifying their work or looking for
new problems to solve) and information system developers
(seeking to understand how ICLs can help them in practice).

Structure We organize this paper according to the structure
proposed for case studies by Runeson et al. [36] and Yin [47],
similar to a recent case study by Voelter et al. [44]. We start
with the background on information systems, language engi-
neering, and incremental computing languages in Section 2.
Section 3 introduces our research questions and collected
data. Section 4 describes the relevant context of the case
study as suggested by Dyba et al. [12]. Section 5 provides an
overview of the IceDust-based implementation of WebLab.
Section 6 answers the research questions. Section 7 discusses
validity. Section 8 contrasts our work to related work, and
we conclude in Section 9.

https://doi.org/10.1145/3276604.3276617
https://doi.org/10.1145/3276604.3276617

SLE ’18, November 5-6, 2018, Boston, MA, USA

2 Background

In this section we cover the background information for
this case study: information system engineering, language
engineering, and incremental computing.

2.1 Web-based Information System Engineering

Nowadays, many applications — including information sys-
tems — are web applications, as these are easily accessible.
This is illustrated by the fact that the most widely used
programming, scripting, and markup languages by Stack
Overflow users in 2018 were JavaScript, HTML, and CSS [1].

Many organizations have unique requirements for their
information systems. Organizations differ on the exact struc-
ture of their data, who gets access to what data, what derived
data is computed, and how many users concurrently use the
system. Consequently, many organizations use custom-built
information systems. Most of these organizations do not
require a large-scale infrastructure for their web-based in-
formation system, usually a single-shard web-server suffices.
While new storage technologies are on the rise, the predom-
inant technology used for storage of data for information
systems is relational databases. The code interacting with
databases is usually object-oriented, as illustrated by the
Correlated Technologies in the same developers survey [1].

Developing information systems poses challenges. One of
these challenges is bridging the gap between domain con-
cepts and the encoding of these concepts in a programming
language [14, 25]. The validatability of a program is a mea-
sure of the size of this gap. Better validatability, a smaller
gap between intent and encoding, makes it straightforward
to establish that a program ‘does the right thing’. Another
challenge is performance [16, 48]. Realizing a high perfor-
mance implementation typically requires invasive changes
to a basic expression of intent, reducing validatability. The
last challenge is reducing the effort spend on engineering
information systems, as budget overruns and delays are a
constant problem for information system engineering [46].

2.2 Incremental Computing Languages and IceDust

Incremental computing is a software feature which, when
a piece of data changes, attempts to save time by reusing
previous results to compute new results [2, 8, 10]. This can
be orders of magnitude faster than computing new results
from scratch. A programming language is an incremental
computing language if all programs written in it use incre-
mental computing. ICLs can be general purpose, for example
self-adjusting computation [2] and Adapton [19]; or domain-
specific, such as type system languages [38], array computa-
tion languages [32, 49], and SQL materialized views [18, 28].

IceDust [20, 22] is a domain-specific ICL for the domain of
information systems. It targets small to medium-sized infor-
mation systems of small organizations that run on a single
shard server and are programmed with a relational database

84

Daco C. Harkes, Elmer van Chastelet, and Eelco Visser

and an object-oriented language. In IceDust, a data model
and derived values can be specified. These derived values can
be calculated by a variety of incremental calculation strate-
gies [20]. Moreover, these calculation strategies can also be
composed [22]. IceDust uses static dependency tracking so
that for each page request only the relevant data needs to be
loaded in memory (dynamic approaches require all data in
memory or persistence of the dynamic dependency graph).

2.3 Language Engineering with Spoofax

Language engineering refers to building, extending and com-
posing general-purpose and domain-specific languages [43].
Language workbenches [13, 15] are tools for efficiently im-
plementing languages and their integrated development en-
vironments (IDEs). Spoofax is a language workbench for de-
veloping textual (domain-specific) programming languages
[26]. Spoofax provides meta-languages for high-level declar-
ative language definition. It provides an interactive environ-
ment for developing languages using these meta-languages.
Moreover, it produces parsers, type checkers, compilers, in-
terpreters, and other tools from these language definitions.

3 Case Study Setup

Our goal is to find out the degree to which ICLs are useful
for developing information systems. We adopt the case study
method to investigate the use of IceDust in a mission critical
project, as we believe that the true risks and benefits of DSLs
can be observed only in such projects. Focusing on a single
case allows us to provide significant details about that case.

To structure the case study, we introduce three specific
research questions in Section 3.1. They are aligned with
the general challenges for information systems discussed
in Section 2.1. The data collected to evaluate these research
questions is introduced in Section 3.2.

3.1 Research Questions

Encoding of domain concepts in programming language
constructs makes it hard to validate that a program behaves
as intended. To this end the domain-specific language and
modeling communities aim to eliminate the gap between
domain concepts and language constructs. IceDust is such
an attempt, thus the first research question is as follows:

RQ-Validatability: Are the language features provided by
IceDust beneficial for establishing that an information
system ‘does the right thing’?

Performance for information systems is important as the
amount of information and the amount of users tends to
grow over time, and the filtering and processing to create
new data can depend on a lot of data. We capture this in
question two:

RQ-Performance: Do IceDust-based information systems
perform well with real-world data and workloads?

Migrating Business Logic to an Incremental Computing DSL

Independent of how useful an approach is in terms of the
first two research questions, it must not require significant
additional effort. Hence, our last research question is:

RQ-Effort: How much effort is required for developing
information systems with IceDust?

3.2 Data Collected

Below we list the data collected to answer the research ques-
tions. As this is a real project, with real users, some data is
not available (see discussion in Section 7.5).

RQ-Validatability We look at the source code of the derived
value calculations in the vanilla system (without IceDust),
and the system with IceDust. We qualitatively asses their im-
pact on the amount of encoding. Moreover, we quantitively
asses their impact on the amount of encoding by looking at
lines of code, where we assume fewer lines of code means
less accidental complexity. (WebDSL and IceDust feature
similar syntax and both organize code in entities.) The busi-
ness logic in IceDust, and in vanilla, we can make available
as artifact.

RQ-Performance We measure the original and migrated sys-
tem performance under a variety of simulated workloads
with real-world data sets, and analyze the achieved perfor-
mance. In addition we measure when and how performance
degrades under increasing workloads. The raw performance
numbers we can make available as artifact. The private user
data we benchmarked on, we cannot make available.

RQ-Effort We measure and discuss the effort required for
migrating WebLab to IceDust, distinguishing expressing busi-
ness logic, embedding it in the rest of the application, per-
formance engineering, and benchmarking. Moreover, we
measure and discuss the effort spent on the IceDust compiler
triggered by the WebLab case study.

4 Case Study Context

In order to better contextualize our case study, we describe
the context as proposed by Dyba et al [12].

4.1 WebLab

WebLab is a learning management system in which students
can submit assignments that get graded semi-automatically.
Students can submit answers to programming, essay, and
multiple choice questions. Individual programming submis-
sions are graded automatically based on (hidden) unit tests.
Multiple choice questions also are graded automatically, and
all types of submissions can be graded on checklists by teach-
ing assistants. Moreover, WebLab provides many features for
calculating the final grades of students: weighted averaging,
pass-n-out-of-m assignments, deadlines with late penalties,
personal deadline overrides, personal grade overrides, bonus
assignments, optional assignments, minimum grade to pass,
and calculation traces to explain the final grades. Finally,

85

SLE ’18, November 5-6, 2018, Boston, MA, USA

HTTP
request
response

Web Server (Tomcat) Object-
relational-
mapper

(Hibernate)

Database (MySQL)

Request Handler
Client

Object Model Transaction

Request Handler

Client

Object Model Transaction

Scheduled tasks

Object Model Transaction

Object Model Transaction

Figure 1. WebLab uses a standard stateless architecture for
web servers. HTTP requests are serviced in isolation by a
request handler. A request handler loads (saves) the data from
(to) the database by means of an object-relational mapper.
Request handlers interact concurrently with the database
through transactions. The scheduled task executor handles
periodic or asynchronous tasks.

these grades are used in all kinds of statistics about the as-
signments and courses in WebLab.

The primary success criterion for WebLab is whether the
system is reliable enough to use for course labs and ex-
ams. This reliability has two aspects. First, its availability
should be high. During exams, or labs with deadlines, Web-
Lab should not succumb to the peak loads, as this would
invalidate exams or labs. This is reflected in RQ-Performance.
Second, the computed final grades of students should respect
all features which interact with grade calculation, otherwise
the final grades are not reliable, and teachers will have to
resort to spreadsheets again. WebLab has so many features
interacting with grade calculation that this proved to be a
non-trivial task the past few years while WebLab was evolv-
ing. This is reflected in RQ-Validatability.

4.2 Software Architecture

WebLab is a web-based information system that runs on a
single shard server. WebLab uses a standard web architec-
ture (Figure 1): a relational database for data persistence and
transactions, a HTTP request handler which handles each
request in isolation, and an object-relational mapper for load-
ing and storing data every request. Its technology stack is the
Tomcat web server, the Hibernate object-relational mapper
[34], and MySQL. WebLab is built in the domain-specific
language WebDSL [17], which provides a typed integration
between a Java-like object-oriented language, a SQL-like
language (HQL), a custom UI templating language, AJAX
interactions, and access control rules. While WebDSL is a
domain-specific language, the code for grade and statistics
calculation (which we migrate to IceDust) is written in the
Java-like language of WebDSL. So for the purpose of this
case study, we can regard this code as non-domain-specific.

SLE ’18, November 5-6, 2018, Boston, MA, USA

4.3 Server Setup

WebLab runs on a large, but relatively old web server. It has
4 12-core 1.7 GHz AMD Opteron processors, 96 GB memory,
and 4 500 GB conventional hard disks in RAID 10 config-
uration. In order to scale under a large parallel workloads,
the Tomcat server is configured to use up to 5 GB of mem-
ory. The disk bottleneck is mitigated by giving MySQL an
InnoDB buffer pool size of 30 GB.

Our development machines, which we use both for de-
velopment and for benchmarking before continuing to the
acceptance stage, are mid-2014 MacBook Pro’s. These fea-
ture 2.8 GHz Intel Core-i7 processors, 16 GB memory, and a
fast PCI-e solid state drive. As memory is limited on these
machines, both Tomcat and MySQL only get 2 GB of ram.

4.4 Development Timeline

Migration to IceDust started in September 2015, but stalled in
October 2015 after 15 person days (PD) due to lack of expres-
siveness of IceDust. The migration restarted in September
2017. As of July 2018, WebLab-IceDust is in acceptance stage.
Since the restart, 80 PDs have been spent. Full-time work
was not feasible due to other pressing projects.

4.5 Tools

IceDust is available as a standalone Eclipse plugin. However,
we used the language workbench Spoofax (also integrated in
Eclipse) as IDE, as WebLab-IceDust used the nightly version
of IceDust during development. WebDSL is also available as
an Eclipse plugin.

4.6 Organization and Team

The developers working on WebLab are a team of two sci-
entific programmers within a university. The projects built
by these scientific programmers are funded by internal cus-
tomers (within the university) or external scientific organi-
zations. As such, decisions made about these projects are
based on limited resources and potential sources of funding.

The team working on the WebLab migration was this team
of scientific programmers plus the IceDust developer. These
scientific programmers were not familiar with IceDust before,
but were already familiar with Spoofax. As the scientific
programmers are housed at the same floor as the IceDust
developer, a lot of informal knowledge transfer happened ‘at
the coffee machine’ [11].

5 The WebLab IceDust Implementation

This section provides an overview of WebLab-IceDust and
illustrates its use of IceDust’s features.

5.1 Overall Structure and Migration

The WebLab code is organized in components as detailed
in Figure 2. In WebLab-IceDust we migrated the data model
partially from WebDSL to IceDust. Moreover, we migrated

86

Daco C. Harkes, Elmer van Chastelet, and Eelco Visser

AC (WebDSL) Ul (WebDSL)
Access Control = Pages / Acti
ction
Rules Templates
v < v
Model OO GPL (WebDSL)
Data Model Global
<>
(WebDSL) e Functions
<K
Data Model / ;
Derived Values Varables Varables
(IceDust) ! !

Figure 2. The WebLab code is organized in the following
components. The base component is the data model which
is partially defined in IceDust, and partially in WebDSL. The
data model can be manipulated by the Java-like GPL base
language of WebDSL. WebDSLs request variables are global
per HTTP request, and its session variables are global per
browser session. The user-interface is defined in two parts:
actions which manipulate data by means of the GPL, and
pages and templates which render information from the data
model or GPL and define a navigation structure. Finally, the
access control component provides or prevents access to
pages and actions based on calls to the model or GPL.

the calculation of derived values from object-oriented GPL
code (methods and global functions) to IceDust derived value
expressions. Finally, we refactored the rest of the code to use
these derived values rather than the GPL methods.

5.2 Size of the System

The WebLab implementation consists of code written in
multiple languages. Table 1 shows the size of the code; it
is ca. 40,000 lines of code (LOC) when not counting exter-
nal libraries. WebLab is a medium sized application with
61 different interactive pages using 549 Ul-templates and
displaying and modifying 98 different object-types through
4013 methods and functions.

Table 2 shows the number of instances of language con-
cepts in IceDust. The business logic specified in IceDust is
542 LOC, where the hand-written incremental calculation is
over 800 LOC.! The generated WebDSL code from this Ice-
Dust code is over 20,000 LOC. This demonstrates that IceDust
significantly cuts down on boilerplate for fine-grained incre-
mental calculation strategies. In fact, it would be infeasible to
write this by hand, let alone keep it correct while the model
is evolving. Note that the hand-written solution provided
only coarse-grained incrementality (checking a whole course
for changes after a single change), while IceDust recomputes
only derived values which are influenced by changes.

! Line count obtained by manually listing the methods and fields which
contribute to calculation of grades and statistics.

Migrating Business Logic to an Incremental Computing DSL

5.3 Use of IceDust’s Features

Table 2 shows that WebLab makes use of many IceDust fea-
tures, indicating their relevance for business logic in infor-
mation systems. The rest of this subsection introduces these
IceDust features and their use in WebLab in more detail.

Derived Values IceDust structures business logic into de-
rived values. Derived values are calculated from base values
or other derived values by means of derived value expres-
sions. Figure 3 shows an example of derived value use in
WebLab. These derived value expressions ensure that the defi-
nition of a derived value always is in one place, like a formula
in a spreadsheet cell. This is good for traceability: the ability
to verify why implemented business logic made certain deci-
sions. When specifications are scattered, traceability tends to
suffer [45]. Moreover, these derived value expressions lend
themselves well to incrementalization. WebLab-IceDust uses
133 derived value expressions, 132 for attributes and 1 for a
bidirectional relation.

Incremental Computing Derived values can be computed
incrementally by IceDust. Figure 4 shows an example of an in-
crementally computed derived value in WebLab. Computed
values are read from cache, and when underlying values
change only the cached values depending on these changes
are recomputed. With these incremental derived values, in-
formation systems can provide fast reads. However, in the
WebLab specification we only use two incremental derived
values, as we mostly use eventual computing.

Eventual Computing Although incremental computing im-
proves read performance, it makes writes to base values
slower, as the writes to base values include recalculating
all changed derived values. Eventual computing speeds up
writes to base values by sacrificing consistency between base
values and derived values. The updates to derived values are
postponed, temporarily allowing reads to return outdated
derived values (Figure 5). Many derived values in the Web-
Lab specification are eventually calculated. With eventual
calculation, WebLab can reliably service many concurrent
users who interact with the same data.

On-demand Computing On-demand computing in IceDust
means no caching at all. The on-demand calculation strategy
is used when performance gains of caching do not outweigh
the space cost. When an on-demand expression refers to an
eventually calculated value, the on-demand value is also po-
tentially outdated when read. We indicate this by calling this
calculation strategy on-demand eventual. Figure 6 shows
examples of on-demand computed derived values in WebLab.

Computing Strategy Composition In IceDust, the mentioned
calculation strategies can be composed within a single speci-
fication (Figure 6). To safeguard against erroneous composi-
tions, IceDust employs a static check (Figure 8). In WebLab-
IceDust all derived value compositions are checked. These

87

SLE ’18, November 5-6, 2018, Boston, MA, USA

Table 1. Number of files and lines of code in various lan-
guages in the WebLab-IceDust implementation.

Language Files LOC | Language Files LOC
IceDust 1 542 | SQL (migration) 1 153
WebDSL 109 35696 | CSS (mostly libs) 18 8513
Java 10 1688 | JS (mostly libs) 1321 29055

Table 2. Number of instances of language concepts in the
WebLab IceDust model.

Concept Count | Concept Count
Attribute 172 Entity 22
abstract 3 base 14
user 27 sub type 8
derived 132 Relation 23
incremental 2 user 22
base 2 derived 1
eventual 32 Function 17
base 19
overridden 13
on-dem. eventual 11
base 11
inline 87
progress : Float = if(pass) 1.0 else 0.0
progressPercent : Float = roundl (progress%100.0)
progressWeighted: Float = progress * weight

Figure 3. Business logic is expressed in IceDust through
derived value expressions. These expressions in this example
calculate the progress of students on assignments.

deadline : Datetime?
deadlineComp :

deadline <+ parent.deadlineComp (incremental)

Datetime?

Figure 4. Derived value expressions can be calculated in-
crementally in IceDust. In this example snippet assign-
ment deadlines are inherited from ancestors if not prov-
ided. When a deadline is set, IceDust automatically updates
deadlineComp for that assignment on all its descendants.
(The <+ operator takes the left value if it is present, other-
wise the right value.)

On-demand ' ' ¥ call
!) | 4 retun
Incremental B flag dirty
I | a write base value
Eventual [] read derived value
"‘@ calculate derived value

Figure 5. Thread activation diagrams for different calcula-
tion strategies in IceDust.

SLE ’18, November 5-6, 2018, Boston, MA, USA

Daco C. Harkes, Elmer van Chastelet, and Eelco Visser

numAttempted Int = countTrue (subsInEval.attemptedComp) (eventual)
numCompleted Int = countTrue (subsInEval.completedComp) (eventual)
numPassed Int = countTrue (subsInEval.pass) (eventual)
completedPercentage Int = numCompleted * 100 /. numAttempted <+ 0 (on—-demand eventual)
passPercentage Int = numPassed x 100 /. numAttempted <+ 0 (on—-demand eventual)

Figure 6. Derived values can be calculated eventually and on-demand in IceDust. On-demand values are not cached, they are
recalculated on every read. In this example snippet the raw statistics of assignments are cached and eventually updated, while

the percentages for presentation purposes are not cached.

gradeWeighted: Float = if (weightCustom > 0.0) totalGrade / weightCustom <+ 0.0 else totalGrade (inline)
gradeRounded Float = max (gradeWeighted — (sub.penalty <+ 0.0) ++ 1.0).roundl () (inline)
gradeOnTime Float = if (sub.onTime <+ false) gradeRounded else 0.0 (inline)
maxNotPassed Float = max (0.0 ++ assignment.minimumToPass — 0.5).roundl () (inline)
passSub Boolean = sub.filter (:AssignmentCollectionSubmission) .passSub <+ true (inline)
maxNotPass Float = if (passSub) gradeOnTime else min (gradeOnTime ++ maxNotPassed) (inline)
grade Float = min (maxNotPass ++ scheme.maxGrade) (eventual)

Figure 7. Derived values in IceDust can be inlined on use site, this controls the granularity of incremental and eventual
calculation. Here a submission grade is calculated based on various parameters, but only the final grade is cached.

checks alert the developer when overlooking the impact of
changing the calculation strategy of a derived value.

Inline Inline derived values enable breaking up a big ex-
pression into a set of smaller expressions, much like a let
expression in functional programming languages (Figure 7).
Toggling between inline and a calculation strategy controls
the granularity of incremental computing. The majority of
derived values in the WebLab specification are inline, favor-
ing a somewhat larger granularity and smaller cache size.

Functions Functions enable reuse and abstraction in Ice-
Dust. Figure 9 shows examples of functions in the WebLab
specification. The WebLab specification has 17 functions,
5 of these are reusable abstractions (such as the first func-
tion in Figure 9) while the rest is used to group together the
markdown reporting scattered in the system.

Inheritance and Overriding Inheritance and overriding en-
ables the modeling of variation in IceDust. Figure 10 shows
an example of this. The WebLab specification uses 13 derived
value attribute overrides.

Native Multiplicities All derived value expressions make
use of native multiplicities: the cardinality of values is part
of the type system, and operators and functions are auto-
matically lifted [20]. The multiplicity type system prevents
null-pointer errors, and the automatic lifting prevents boiler-
plate code dealing with collections and optional values.

5.4 IceDust Feature Requests

Apart from using the existing IceDust features, the WebLab
implementation required features not previously supported
in IceDust. For WebLab, two IceDust extensions have been

88

on-demand eventual
on-demand eventual

incremental

base-value

Figure 8. Calculation strategies guarantee their properties
iff the derivation expressions refer to derived values with the
same strategy or stronger strategies (lower in the lattice).

hasF (d Floatx) Boolean = count(d) > 0

gradeTracePassFail (s:BasicSubmission)
"Pass or Fail assignment, result: " +
if (s.pass) "**PASS**" else "xxFAILx*"

String =

Figure 9. Functions in IceDust enable abstraction. Incremen-
tal and eventual computing inlines functions on use-sites.

entity CollectionSubmission extends Submission {
progress Float =
if(pass) 1.0
else if (!isPassN)
sum (subsForGrade.progressW)
else

/ totalWeight

sum (subsForGradeN.progressW) / totalWeightN
<+ 0.0 }

Figure 10. Inheritance with overriding enables modeling
variation in IceDust. Progress in collection submissions takes
the progress of the children (subsForGrade) into account. It
overrides progress of Submission defined in Figure 3.

developed; below we introduce these extensions and the
specific rationales for developing them.

Migrating Business Logic to an Incremental Computing DSL

Multi-Threaded Eventual Calculation WebLab has high peak
workloads concentrated on a small subset of all data: on-
line exams with hundreds of students. Moreover, the derived
values depend on many values and influence many other
derived values. For example, the deadline in Figure 4 flows
to all descendant assignments, and influences the grade cal-
culation for all student submissions to these assignments.
This can create a performance problem when students are
submitting answers an exam while concurrently a teacher
tries to change the deadline of that exam. Eventual calcu-
lation minimizes the number of transaction conflicts, such
that these interactions can all succeed concurrently.
However, if availability is not important (for example re-
calculating all derived values in a course, after a migration),
incremental computing is much faster than eventual com-
puting. To mitigate this issue we made eventual calculation
multi-threaded, and the number of threads configurable at
runtime. This enables us to allocate more resources during
migration such that it takes hours instead of days.

Manual override During development of WebLab-IceDust, a
performance caveat was discovered. With some derived bidi-
rectional relations, IceDust fails to capture the dependencies
precisely with its path-analysis. This leads to a slowdown for
the single derived relation in Table 2. The relational calculus
captures the dependencies more precisely. This prompted a
feature request for IceDust to ignore incremental updates
for a specific derived value. Instead, we use the underlying
relational database to manually incrementalize this relation.

6 IceDust Evaluation

Many IceDust features are used to achieve a performant
implementation with a validatable specification. However,
achieving this also required work on the IceDust compiler. In
this section we investigate these observations in more detail
by evaluating the research questions introduced earlier.

6.1 RQ-Validatability

Migrating the business logic from WebDSL to IceDust re-
duced the line count by 32% (from 800+ to 542). As this is a
real-world system, not a toy example designed to showcase
the DSL, we believe this result to be significant. It indicates
that WebLab-IceDust contains less accidental complexity. We
assess IceDust’s effect on validatability qualitatively below.

Improved Traceability using Derived Value Attributes De-
rived value attributes have been used extensively, as illus-
trated by Table 2 and all code figures in Section 5. The de-
rived value attributes make sure that derived values have
one unique definition: the derivation expression. This helps
traceability, developers never have to doubt whether a de-
rived value in the system comes from a specific piece of code.
This in turn simplifies reasoning about the code.

89

SLE ’18, November 5-6, 2018, Boston, MA, USA

Figuring out where a derived value came from was compli-
cated in WebLab-vanilla. When debugging, more time was
spent making sure that the derived value did not originate
from another piece of code, rather than trying to understand
why a specific piece of code could have produced a specific
value. Expressing the business logic in IceDust shifted the
debugging conversation from tracing implementation details
to domain discussions about the business logic.

Improved Readability with Native Multiplicities The WebLab-
vanilla implementation in WebDSL suffered from the billion
dollar mistake: null-pointers [23]. The code-base is littered
with non-null checks. Modern languages often adopt the
Option Monad, with accompanying boiler-plate code con-
taining maps and flatMaps or do notation. Native multiplic-
ities solve the billion dollar mistake without introducing
boiler-plate code. The business logic written in IceDust only
mentions multiplicities when needed. This improves the
readability of WebLab’s business logic significantly.

Simpler Performance Engineering with Calculation Strategies
In WebLab-vanilla it was very hard to validate that caching
of derived values was correct. In fact, during migration we
discovered inconsistencies in the data set from the live sys-
tem. A grading parameter had been changed in a course, but
the cached final student grades were never updated. With Ice-
Dust, cache invalidation is correct by construction. Moreover,
multiple calculation strategies can only be soundly composed
in IceDust. This means developers can stop worrying about
the correctness of incremental computing and end users get
correct out-of-date indicators for eventual calculation.

Another benefit of IceDust is that it is easy to see which
calculation strategies are used. This makes it easier to un-
derstand and discuss performance trade-offs.

Separation of Concerns IceDust’s design forces a separation
of concerns between business logic and performance. Both
can be edited separately in IceDust. Since we adopted IceDust,
we noticed that business modeling and performance engi-
neering have become two separate activities. The business
logic specification is stable during performance engineering.

Remaining Intrinsic Complexity While IceDust reduces the
accidental complexity of WebLab’s business logic consider-
ably, the business logic can still be complicated to understand.
For example, Figure 7 takes some effort to understand, as
many variables contribute to the grade of a student (the full
specification is even longer). Note that in WebLab-vanilla
it was not even possible to see that the business logic is in-
herently complicated. In future work we might explore how
to better organize the remaining intrinsic complexity. We
summarize as follows regarding RQ-Validatability:

Derived value expressions, as a single source of compu-
tation, give developers confidence that they understand
what the business logic specification means.

SLE ’18, November 5-6, 2018, Boston, MA, USA

During performance engineering developers can reason
about what the system is going to do based on calculation
strategies, without worrying about inconsistencies.

6.2 RQ-Performance

To assess whether WebLab-IceDust performs well with real-
world data sets and real-world workloads, we asked the main
WebLab developer to describe all scenarios that could be
performance bottlenecks. We identified three categories of
interactions. Lightweight actions that hundreds of actors do
concurrently. For example, students submitting new answers.
Mediumweight actions have a larger effect and are performed
by a single actor, while concurrently lightweight actions are
performed. For example, a teacher postponing the deadline
of the exam by 10 minutes, during the exam. And finally,
heavyweight actions with a huge effect, performed by a
single actor. For example, an administrator recalculating all
derived values in a course after a migration.

For all these examples we used real-world data from the
live database. (Which we cannot make available for privacy
reasons.) Unfortunately, WebLab does not save all HTTP
requests, so we could not replay real-world workloads. For-
tunately, WebLab saves the history of programming submis-
sions, so we could estimate the workload based on that.

We report on our final configuration of calculation strate-
gies: mainly eventual computing. We experimented with
other configurations, but none provided adequate availabil-
ity under concurrent workloads. We vary the number of
eventual computing threads to assess WebLab-IceDust’s scal-
ability. We report both the performance on a MacBook (our
development machine) and the web server. Our baseline
performance is the WebLab-vanilla implementation.

We identified three lightweight actions: random submis-
sion reads (browsing), random submission creations (first-
time browsing), and random submission edits (working).
Many students perform these actions concurrently. For these
actions we are interested in the maximum workload WebLab
can handle. Moreover, we also want to know under what
workload derived value calculation starts to lag behind. If
the workload is below that threshold, a teacher can see live
statistics of exam progression during the exam. During a
representative exam which lasted 3 hours and 30 minutes,
we had 31836 code edits by 278 students. This is on average
3 edits per second. The busiest second was 15 edits, and the
99th percentile is 8 edits per second.

We identified two mediumweight actions: change deadline
and change checklist weight. The checklist is a grading tool
for teaching assistants, and the checklist weight determines
the ratio between other means of (automated) grading and
the checklist. These two actions are performed by teachers,
possibly while students are submitting answers. For these
actions we are interested in how long it takes for all derived
values depending on the change to be computed. Changing
a deadline changes all deadlines lower in the assignment

90

Daco C. Harkes, Elmer van Chastelet, and Eelco Visser

tree, but only influences grades if submissions are late. On
the other hand, checklist weights are sure to influence the
grades, but only of the assignment and its ancestors.

We identified only one heavyweight action: recalculate a
course. This action is performed by administrators after a
migration. For this action we are also interested in how long
it takes to compute all derived values.

Results Table 3 shows the results of our benchmarks. Ice-
Dust enables live statistics during exams (create, edit, and
read submissions), which was not possible with vanilla due to
availability issues. Moreover, it can provide live statistics for
well above 3 edits per second. IceDust speeds up the medium
actions (change deadline and checklist weight) significantly,
as IceDust’s fine-grained incrementality does not have to
visit the whole course. Also, with enough worker-threads,
IceDust improves the recalculation speed of whole courses.

However, WebLab-IceDust can handle less peak load. With
more IceDust worker-threads running, less processing power
is available for request-handler threads. Moreover, object cre-
ation (in create submission) is more costly with IceDust. All
relations in IceDust are bidirectional, opposed to many uni-
directional relations in vanilla. Unfortunately, WebDSL and
the ORM unnecessarily load objects in memory for keeping
relations bidirectionally consistent, even when the other side
of the relation is never used. We tried fixing this, but after 4
person days we concluded that it was not worth the effort.
Thus, IceDust provides up-to-date statistics at the cost of
slower object creation in this case study.

In terms of scalability, more parallelizable workloads bene-
fit more from more worker threads. Recalculate course scales
better than the mediumweight actions (change deadline and
checklist weight). And the mediumweight actions performed
on larger courses benefit more from extra threads than the
same actions performed on smaller courses. Surprisingly, 2
threads for recalculating courses on the laptop consistently
takes less than half the time of 1 thread. We cannot explain
this, but we think it might be due to the CPU speed-step
algorithm. Also, scalability on the laptop is hampered by
throttling (up to 4ghz for single thread down to 2.6ghz for
4+ threads). The server does not have throttling, so it scales
better. However, the server has slower CPUs in general, so
it needs more threads to achieve live statistics. As the server
has many more CPUs, its throughput (req/sec) is higher; but
as the CPUs are slower the latency is also slightly higher
(sec/req). In terms of performance, we summarize:

The WebLab implementation in IceDust enables live sta-
tistics, which was infeasible manually.

WebLab-IceDust performs similar or better compared to
WebLab-vanilla, except for object creation.

6.3 RQ-Effort

Migrating the WebLab business logic to IceDust took 80 PDs
in total. Table 4 shows the different development tasks.

Migrating Business Logic to an Incremental Computing DSL SLE *18, November 5-6, 2018, Boston, MA, USA

Table 3. Benchmark results. The first three benchmarks are maximum system throughput under concurrent student actions.
We report the average requests per second over 30 second runs, higher is better. More IceDust threads decrease performance, as
less processing power is available for requests. (Vanilla calculation cannot run concurrently with load, hence no measurements
for one thread.) The next two benchmarks are the system throughput under which live statistics can be maintained by IceDust.
Also these we run for 30 seconds. More IceDust threads increase performance, as derived values are calculated faster. The
final three benchmarks are the medium- and heavyweight teacher and administrative actions. For these we measure time to
completion in seconds, lower is better. More IceDust threads increase performance, as derived values are calculated faster. All
benchmarks have been performed three times. We report the median. All measurements lie within +10% of the median.

Machine | MacBook Server
Impl. Vanilla IceDust Vanilla IceDust
Threads 0 1 0 1 2 3 4 5 & 01 0 2 4 6 8 10 12 14 16
Action Unit Course
read reg/sec Small | 9099 - 84.76 8067 76.15 72.37 69.77 6590 6237|136.04 - 12065 112.53 10958 10311 92.68 8439 74.66 67.29 6118
submission Medium | 89.68 - 90.85 84.65 80.86 77.49 73.83 71.00 68.01|15295 - 145.04 12537 119.33 112.02 104.82 93.88 88.26 80.14 7166
Large | 9596 - 9456 89.42 84.60 80.70 77.04 7401 70.64|132.45 - 119.62 141.99 13021 11544 10522 9749 96.07 95.98 96.19
edit reg/sec Small | 3417 - 8441 79.21 75.40 7177 68.27 6442 61.07| 31.06 - 12049 11552 11542 114.88 114.48 114.18 114.18 11355 113.25
submission Medium | 63.65 - 7553 64.24 6187 50.40 57.03 5436 5224|11191 - 9613 90.92 87.08 8202 69.74 6473 6230 63.18 5896
Large | 60.28 - 75.94 7157 68.37 65.11 62.28 59.46 57.24|10417 - 107.84 103.64 9630 89.56 80.08 7568 7130 6663 62.63
create req/sec Small | 7572 - 5572 50.04 4471 40.25 37.25 3447 32.28[100.72 - 6770 6439 6195 6058 57.31 5449 5191 48.94 46.85
submission Medium |101.18 - 56.61 50.17 43.71 40.95 3737 34.96 32.24|137.07 - 67.91 6445 6555 62.12 5837 5817 55.65 55.80 49.03
Large [101.12 - 30.60 25.85 22.99 2145 1958 18.15 16.61|139.3¢ - 3593 3573 3402 33.58 3252 3173 3140 2047 28.79
edit req/sec Small - - - 22.52 34.46 40.07 42.32 44.16 45.16 - - - 117.45 114.38 113.85 113.31 112.85 112.41 111.61 113.68
submission Medium - - - 694 13.12 1578 1686 19.60 19.87 - - 659 1129 1649 2093 23.95 2675 29.15 3072
(live stats) Large - - - 794 1501 17.88 19.62 20.95 22.26 - - - 612 1247 1662 19.69 20.86 2168 253 24.66
create reg/sec Small - - - 974 16.25 1895 2034 2127 21.48 - - 902 1573 2056 2286 2492 2685 27.83 2930
submission Medium - - - 473 834 1055 1138 1241 13.18 - - 449 831 1126 1340 1482 1577 1645 17.30
(live stats) Large - - - 395 686 820 868 899 9.20 - - - 360 626 829 954 1054 1181 1235 1268
change sec/ Small T 120 - 145 79 63 58 51 45 ~ 303 195 110 78 64 56 51 48 47
deadline 10 reqs Medium - 210 - 18 9 75 70 62 55 - 57 - 252 140 106 79 68 62 59 57
Large - 777 - 296 156 122 115 103 92 - 2324 - 408 232 172 143 128 120 117 102
change sec/ Small - 600 - 24 18 17 16 16 14 - 1220 - 21 15 14 12 12 11 11 12
checklist w. 100 reqs Large S 6430 - 106 64 54 50 46 43 - 19130 - 123 71 55 46 41 39 41 45
recalculate sec/req Small - 21 - 125 57 44 34 40 30 - 49 - 147 76 53 42 36 32 30 28
course Medium - 530 - 1295 598 472 425 373 327 - 1718 - 1557 795 549 434 373 333 318 302
Large - 5508 - 10368 4786 3670 3244 2910 2653 - 18494 - 12624 6833 5078 4365 4049 3821 3797 3748
Table 4. WebLab migration to IceDust effort We spent 45% of the total effort (36 PDs) on benchmarks
Development Task Effort 7% Total and perfolrmar.me engineering. As We.:bLab is used for exams
Modeling 9PD 1% at our university, it is of paramount importance that we can
Integration / Migration 24 PD 30% trust its performance. Designing benchmarks, setting up a
IceDust Compiler 11PD 14% benchmark infrastructure, and performing the benchmarks
Benchmarking / Performance Engineering 36 PD 45% took the most time. While it is technically not part of the
migration, it was required to give the responsible developers
We spent 11% of the total effort (9 PDs) on reverse engi- the confidence in WebLab-IceDust. A benefit of the calcula-
neering WebLab’s business logic and modeling it in IceDust. tion strategies is that’ 1s easy to switch b’etween them. Proper
We spent 30% (24 PDs) on integrating that business logic benchmarking requires time, but getting a correctly func-

tioning variant implementation to benchmark was a matter

into the rest of the application. This included writing mi-
of minutes. Concerning RQ-Effort we conclude:

gration code to port the data from vanilla’s calculation to
IceDust’s calculation, new user-interface (UI) elements to in- The effort for additional business logic is significantly
dicate calculation progress, and retro-fitting unit tests. Also lower in the ICL, but the total effort is not reduced.

new functionality was added during the integration: student
grades finalization (after a course is over and grades are final).
Modeling finalization in IceDust was a matter of minutes,
creating UI elements took more effort.

We spent 14% of the total effort (11 PDs) on the IceDust
compiler to add new features. Both the IceDust developer
and the WebLab developers made changes to the IceDust
compiler. (Remember that the WebLab developers are famil-
iar with Spoofax and WebDSL.) The added language features
enabled us to keep the separation of concerns between busi-
ness logic and performance, effort well spent.

While IceDust does not lead to an overall effort reduction
or increase, it does increase separation of concerns.

7 Discussion

The preceding sections show how IceDust affects validatabil-
ity, performance, and effort of a real-life information system.
We put our results in a broader perspective in this section.

7.1 Internal Validity

Internal validity concerns whether our results can be trusted.

91

SLE ’18, November 5-6, 2018, Boston, MA, USA

Bias One factor that affects this question is the bias because
of the involvement of the authors in this case study itself.
The authors are the developers of IceDust and WebLab. To
counter this bias, we focused on aspects that can be objec-
tively measured (size, concept counts, performance, effort).

Team Expertise To clarify the potential impact of the team
on the case study outcomes, we describe the team’s back-
ground and expertise. The scientific developers both have
5+ years experience in developing information systems on
the WebDSL technology stack. The IceDust developer had
little experience with the WebDSL technology stack, but
5+ years experience with developing web applications with
object-oriented languages and relational databases. When
the project started, the scientific developers understood the
business logic written in IceDust, but had little understand-
ing of IceDust’s calculation strategies. During the migration
they gained understanding of these strategies by inquiring
the IceDust developer and through experimentation.

Benchmark Internal Validity The benchmark results depend
on full stack of technologies: MySQL, Java, Hibernate, Web-
DSL, and IceDust. Moreover, the results also depend on the
hardware used and the settings for MySQL and the JVM. We
verified that we actually measured the impact IceDust by
benchmarking vanilla, and that we did not measure noise by
benchmarking multiple times with a low standard deviation.

In this paper, our benchmarks focus on external validity.
As suggested by Vitek et al., we have benchmarks focusing on
external and on internal validity [42]. Benchmarks focusing
on internal validity are described in previous work [20].

7.2 Conclusion Validity

Our findings favor the using an ICL for separation of the busi-
ness logic and performance concerns. Conclusion validity
raises the question whether these findings can be explained.

Design of IceDust IceDust has been specifically designed
to achieve the benefits reported in this case study. So the
design rationale of IceDust forms the theoretical explanation
of the case study outcomes. For an extensive description of
this design rationale we refer to [20-22].

Cognitive Dimensions of Notations The specification of busi-
ness logic in IceDust improves over the specification in an
object-oriented language according to the cognitive dimen-
sions of notations, a set of established language evaluation
criteria [7]. Four dimensions are specifically improved.
IceDust greatly reduces Error-Proneness with regard to
incremental and eventual computing. Developers can rely
on the IceDust runtime to keep derived values consistent
with their defining expressions. IceDust also removes Hidden
Dependencies in derived values, as all derived values have a
single definition (unlike fields in object-oriented language
which can be assigned to in all methods). IceDust greatly
reduces the Viscosity of calculation strategies, changing a

92

Daco C. Harkes, Elmer van Chastelet, and Eelco Visser

strategy is changing a keyword. IceDust also reduces the
Verbosity of Language by adopting native multiplicities.

Experience vs. Notation A rival explanation of the success
for validatability we measured might be that it is easier to
understand the code as we spent considerable time at the
white-board trying to reverse engineer the original code. The
WebLab team is skeptical, a lot of human working memory
is required to fully grasp all details of WebLab’s business
logic (even though it is only 500 LOC in IceDust). Every time
a developer has worked on another project, and comes back
to WebLab, this business logic needs to be rediscovered. This
rediscovering is much easier in the IceDust specification.

7.3 Construct Validity

When describing our case study setup (Section 3), we ex-
plained how the three aspects studied (validatability, perfor-
mance, and effort) relate to our overall goal of assessing the
usefulness of ICLs for developing information systems. From
a construct validity point of view, there are additional as-
pects (constructs) that we could have studied. Unfortunately,
our migration did not yield any data on these constructs.
However, we do think that our study is still useful, as these
constructs are largely orthogonal to aspects we did study.

Interactive Development Information system development
requires experimenting to design and understand some of
the business logic specifications. Validatable specifications
and extensive testing can reduce, but not avoid this need.
Unfortunately, WebDSL impairs interactive development
due to long compilation times (over 3 minutes for WebLab).
While WebDSL features incremental compilation, it only
applies to non-invasive WebDSL features (such as UI compo-
nents). The IceDust to WebDSL compilation takes a couple of
seconds, and the extra generated WebDSL code lengthens the
WebDSL compilation by a minute. This extra minute can be
explained by the huge amount of fine-grained incrementality
code generated. We do not believe IceDust itself inherently
impairs interactive development, but properly incremental-
izing the WebDSL and IceDust compilers is separate project.

Maintainability In Little Languages: Little Maintenance?
[40] van Deursen and Klint conclude that a DSL designed
for a well-chosen domain and implemented with adequate
tools may drastically reduce the costs for building new ap-
plications as well as for maintaining existing ones. While we
have no experience with long-term maintainability, we did
make observations which confirm their conclusion.

During the migration we added new functionality: grade
finalization. Modeling finalization of grades, and finaliza-
tion statistics of courses in IceDust was easy. The intended
behavior could be expressed concisely in IceDust.

Another part of the effort in software maintenance is re-
understanding the existing code. As grade finalization in-
teracts with grade calculation in general, it needed to be

Migrating Business Logic to an Incremental Computing DSL

‘hooked in’. Due to the derived value expressions it was
easy to see what part of the specification needed to be modi-
fied. IceDust’s emphasis on validatability suggests that re-
comprehension of the system is simplified.

Business Logic Evolution The business logic of information
system evolves over time. When decision policies change,
different decisions can be made by the business logic based
on the same data. The question is how to deal with this evo-
lution. WebLab implements an ad hoc check and does not
override previous decisions or derived values. The migration
to IceDust did not address this question. However, a vali-
datable specification, which only talks about business logic,
might be a stepping stone for addressing this question.

7.4 External Validity

Here we discuss whether our results can be generalized.

Beyond WebLab IceDust is best suited for information sys-
tems with complex business logic and a considerable amount
of concurrent interaction. As for these situations a validat-
able specification together with good performance is impor-
tant. So far, WebLab is the only information system which we
modeled with IceDust, integrated into the rest of the applica-
tion, and benchmarked with user data. We did model other
systems with IceDust, but did not integrate or benchmark
them. The findings in this paper with regard to validatability
apply to these other information systems as well.

Beyond the Team To be successful with IceDust, a team
should have experience with building small to medium scale
information systems with object-oriented languages and re-
lational databases. IceDust provides separation of concerns
between business logic specification and performance engi-
neering, but the latter still requires expertise. If the IceDust
calculation strategies provide enough performance, this ex-
perience should suffice. However, to modify or add strategies,
the team in addition requires language engineering expertise.
The IceDust compiler is not overly complicated, both the
WebLab team and a master student were able to extend it
independently. Note that they did use Spoofax before.

Beyond WebDSL IceDust probably generalizes beyond Web-
DSL, any object-oriented language with an object-relational
mapper should do. IceDust provides an interface to the rest
of the application with the getters and setters of fields and
the constructors of objects. At this moment we have not
implemented any other backends that persist their data. We
have not explored targeting non object-oriented languages.

Beyond Spoofax The IceDust implementation in Spoofax
is a close translation from its grammar, static semantics,
and dynamic semantics [20-22]. IceDust does not feature
exotic constructs in its semantics. Thus, with considerable
effort, IceDust should be implementable in any language
workbench or general purpose programming language.

93

SLE ’18, November 5-6, 2018, Boston, MA, USA

7.5 Repeatability

This case study reports on the development of a real-world
information system. WebLab was not specifically set up as
a case study. This has advantages and drawbacks. The ad-
vantages include a realistic system, realistic performance
constraints, realistic data sets, and an experienced team of
developers. The drawback is the unavailability of the source
code and user data. (The business logic in IceDust and vanilla,
as well as the raw performance numbers, we can make avail-
able as artifact.) In McGraths’s terms [31], this is a field study,
it emphasizes realism over repeatability.

7.6 Research Implications

This paper provides an in-depth case study of the use of Ice-
Dust to implement the business logic of a learning manage-
ment information system, focusing on validatability, perfor-
mance, and effort. To corroborate and challenge our findings,
additional studies are needed, both for IceDust-based sys-
tems as well as for other incremental computing approaches.

Furthermore, as this study detailed the need for new lan-
guage features during application development, we propose
future research on co-development of DSLs and applications.

8 Related Work

We are not aware of any other case studies of ICL use for
information systems. Instead, we compare our work to incre-
mental computing and DSL case studies. Also, we contrast
IceDust to other ICLs which we might have used instead.

8.1 Case Studies in Incremental Computing

Chan et al. investigate the trade-off between query perfor-
mance, incremental maintenance cost, and storage space for
materializing views [9]. They find that the optimal solution
is to materialize some views, not all. We did not report on
how we select calculation strategies and what we materialize
(inline is not materialized). However, we have observed a
similar trade-off between query time and incremental mainte-
nance cost while experimenting with various configurations.

Another case study in databases [24] investigates various
performance optimizations for maximal event throughput.
Changes grouped together in a larger commit increases per-
formance. Our experience is similar. One big commit (with
incremental) can recalculate a full course much faster than
many small commits (with eventual). However, large com-
mits introduce concurrency conflicts, hurting availability.
They report the highest performance with the business logic
on the clients instead of in the database (by means of trig-
gers). In IceDust, we also run the business logic in the GPL.

Behrend and Schueller did a case study adopting a new
materialized view update technique [6]. They observe that
their technique improves performance only in specific con-
ditions. Similarly, IceDust’s incrementalization technique

SLE ’18, November 5-6, 2018, Boston, MA, USA

improves over vanilla in specific conditions: small updates
are processed much faster, while object creation is not.
These studies only report performance, not validatability
or effort. So we cannot compare our validatability and effort
findings with other incremental computing case studies.

8.2 Case Studies with DSLs

Adopting a state machine DSL in a case study [5] led to find-
ings similar to ours. They estimate a 10-fold effort reduction
in modeling new scenarios in the DSL. In contrast to us, they
do not report any required effort for improving their DSL
compiler. They report decreased complexity by a code size
reduction of 2-3x. Similarly, we also have a 1.5x reduction.

Adopting the Risla DSL for financial applications [39] led
to similar findings. The effort for new products was reduced
5-fold. They mention extending the DSL is not easy, but
do not quantify this in effort. Like us, they say “it has be-
come much easier to validate the correctness of the software”.
Unfortunately, they do not provide evidence for this claim.

Adoption of the Pheasant DSL [4] was studied in a lab ex-
periment setting. They report an effort reduction of roughly
1.5x. However, in this lab setting, all tasks were expressible
with the DSL, and DSL compiler effort is excluded. They
report fewer errors and higher confidence for inexperienced
users, but no difference for experienced users. We find better
validatability for experienced users. This might be explained
by the much higher complexity of our multi-month migra-
tion, opposed to one hour lab experiment setting.

Ericsson adopted model-driven software engineering [37].
They conclude that coding is always necessary, including
coding the code-generators. Our case study agrees, we added
features to the IceDust compiler during migration as well.
They report adoption needs to be broken up in phases. We
did not have to. This could be explained by the fact that Web-
Lab is a smaller system. One of their goals was to increase
productivity, but they did not measure it.

Adoption of the mbeddr extensible language [44] also
led to similar findings. mbeddr reduced complexity and im-
proved readability while code size stayed the same. Similarly,
IceDust increases validatability, but our code-size did reduce.
5% of their effort was spent on new language extensions,
while we spent 14% on new IceDust features. This might be
explained by being able to express everything in C when
a DSL feature is lacking in mbeddr, while IceDust needs to
cover everything. Like us, they report an effort reduction for
adding additional functionality, but not for the total effort.

8.3 ICLs for Information Systems

Various ICLs target information systems or present one as
running example. Here, we cover these ICLs. ICLs targeted
at different domains, but which are similar to IceDust’s me-
chanics are covered in previous work [20, 22].

Object-Set Queries (OSQ) [35] brings relational incremen-
tal updates to an object-oriented setting. This might be a

94

Daco C. Harkes, Elmer van Chastelet, and Eelco Visser

viable approach for incrementalizing the bidirectional re-
lation which we had to hand-optimize in this case study.
However, OSQ only supports set comprehensions, not com-
plex expressions for calculating primitive values. Moreover,
0SQ works in-memory, it is not clear whether it would work
with an object-relational mapper and concurrent interaction.

IncOQ [30] improves over OSQ by tracking dependencies
statically and incorporating demand. However, the same limi-
tations apply: only set comprehensions and only in-memory.

Complex Object Queries [33] is a predecessor of these. How-
ever, this early approach incurs a considerable performance
penalty by translating everything into sets and tuples.

MOVIE [3] also incrementalizes OQL queries, and it does
persist its data. However, it does not support recursion,
which this case study requires.

OR-SQL has also been incrementalized [29]. However, it
only supports additions and removals (as most relational
approaches) which significantly impair its efficiency when
calculating complex primitive value expressions.

idIVM [27] incorporates id-based-diffs in a relational data-
base. idIVM persists its data, but it is used by submitting
queries to a database rather than by an object-relational
mapper. Moreover, id[VM does not support recursion.

LogiQL [16] also supports incremental relational updates
[41]. In contrast to many relational approaches its imple-
mentation supports recursive aggregation, be it behind a
compiler flag. However, also this database requires interac-
tion through queries, rather than an object-relational mapper.

9 Conclusion

In this paper we present a case study that evaluates the use
of the ICL IceDust for specification of the business logic
of an information system. We conclude that the migrated
code has better validatability, similar or better performance,
and that the effort involved in modeling decreases, but total
effort does not. The ICL creates a separation of concerns
between business logic specification and performance engi-
neering. Performance engineering still takes considerable
effort, including pull requests to the ICL compiler.

In future work we would like to investigate the phenom-
enon of co-development of DSLs with their applications.
What factors influence whether a DSL is co-developed with
its application? And is this co-development similar to co-
development of frameworks or libraries with applications?

Another direction for future work is composing incremen-
talization techniques. IceDust’s path-based incrementaliza-
tion works well for complex expressions, while the relational
calculus works well for bidirectional relations. Can these be
combined in a unified incremental computing approach?

Acknowledgements The work presented in this paper was
partially funded by the NWO VICI Language Designer’s Work-
bench project (639.023.206).

Migrating Business Logic to an Incremental Computing DSL

References

(1]
(2]
(3]

—
oo
[t

(10]

(11]

(12]

2018. Stack Overflow Developer Survey 2018. https://insights.
stackoverflow.com/survey/2018. Accessed: 2018-03-21.

Umut A Acar. 2005. Self-adjusting computation. Ph.D. Dissertation.
Princeton University.

M. Akhtar Ali, Alvaro A. A. Fernandes, and Norman W. Paton. 2003.
MOVIE: An incremental maintenance system for materialized object
views. Data & Knowledge Engineering 47, 2 (2003), 131-166. https:
//doi.org/10.1016/50169-023X(03)00048-X

Ankica Barisic, Vasco Amaral, Miguel Gouldo, and Bruno Barroca.
2011. Quality in use of domain-specific languages: a case study. In Pro-
ceedings of the 3rd ACM SIGPLAN workshop on Evaluation and usability
of programming languages and tools, PLATEAU 2011, Portland, OR, USA,
October 24, 2011, Craig Anslow, Shane Markstrum, and Emerson R.
Murphy-Hill (Eds.). ACM, 65-72. https://doi.org/10.1145/2089155.
2089170

Don S. Batory, Clay Johnson, Bob MacDonald, and Dale von Heeder.
2002. Achieving extensibility through product-lines and domain-
specific languages: a case study. ACM Transactions on Software Engi-
neering Methodology 11, 2 (2002), 191-214. https://doi.org/10.1145/
505145.505147

Andreas Behrend and Gereon Schiiller. 2014. A case study in op-
timizing continuous queries using the magic update technique. In
Conference on Scientific and Statistical Database Management, SSDBM
’14, Aalborg, Denmark, June 30 - July 02, 2014, Christian S. Jensen,
Hua Lu, Torben Bach Pedersen, Christian Thomsen, and Kristian Torp
(Eds.). ACM, 31. https://doi.org/10.1145/2618243.2618285

Alan F. Blackwell, Carol Britton, Anna Louise Cox, Thomas R. G.
Green, Corin A. Gurr, Gada F. Kadoda, Maria Kutar, Martin Loomes,
Chrystopher L. Nehaniv, Marian Petre, Chris Roast, Chris Roe, Allan
Wong, and R. Michael Young. 2001. Cognitive Dimensions of Nota-
tions: Design Tools for Cognitive Technology. In Cognitive Technology:
Instruments of Mind, 4th International Conference, CT 2001, Warwick,
UK, August 6-9, 2001, Proceedings (Lecture Notes in Computer Science),
Meurig Beynon, Chrystopher L. Nehaniv, and Kerstin Dautenhahn
(Eds.), Vol. 2117. Springer, 325-341. https://doi.org/link/service/series/
0558/bibs/2117/21170325.htm

Magnus Carlsson. 2002. Monads for incremental computing. In Pro-
ceedings of the seventh ACM SIGPLAN international conference on Func-
tional Programming (ICFP 2002). 26-35. https://doi.org/10.1145/581478.
581482

Goretti K. Y. Chan, Qing Li, and Ling Feng. 1999. Design and Selection
of Materialized Views in a Data Warehousing Environment: A Case
Study. In DOLAP 99, ACM Second International Workshop on Data
Warehousing and OLAP, November 6, 1999, Kansas City, Missouri, USA,
Proceedings. ACM, 42-47. https://doi.org/db/conf/dolap/ChanLF99.
html

Camil Demetrescu, Irene Finocchi, and Andrea Ribichini. 2011. Re-
active imperative programming with dataflow constraints. In Pro-
ceedings of the 26th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA
2011, part of SPLASH 2011, Portland, OR, USA, October 22 - 27, 2011,
Cristina Videira Lopes and Kathleen Fisher (Eds.). ACM, 407-426.
https://doi.org/10.1145/2048066.2048100

Scott E Donaldson and Stanley G Siegel. 2001. Successful software
development. Prentice Hall Professional.

Tore Dyb4, Dag I. K. Sjeberg, and Daniela S. Cruzes. 2012. What works
for whom, where, when, and why?: on the role of context in empirical
software engineering. In 2012 ACM-IEEE International Symposium
on Empirical Software Engineering and Measurement, ESEM °12, Lund,
Sweden - September 19 - 20, 2012, Per Runeson, Martin Host, Emilia
Mendes, Anneliese Amschler Andrews, and Rachel Harrison (Eds.).
ACM, 19-28. https://doi.org/10.1145/2372251.2372256

95

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

SLE ’18, November 5-6, 2018, Boston, MA, USA

Sebastian Erdweg, Tijs van der Storm, Markus Volter, Meinte Boersma,
Remi Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout,
Steven Kelly, Alex Loh, Gabriél Konat, Pedro J. Molina, Martin Palatnik,
Risto Pohjonen, Eugen Schindler, Klemens Schindler, Riccardo Solmi,
Vlad A. Vergu, Eelco Visser, Kevin van der Vlist, Guido Wachsmuth,
and Jimi van der Woning. 2013. The State of the Art in Language
Workbenches - Conclusions from the Language Workbench Chal-
lenge. In Software Language Engineering - 6th International Confer-
ence, SLE 2013, Indianapolis, IN, USA, October 26-28, 2013. Proceed-
ings (Lecture Notes in Computer Science), Martin Erwig, Richard F.
Paige, and Eric Van Wyk (Eds.), Vol. 8225. Springer, 197-217. https:
//doi.org/10.1007/978-3-319-02654-1_11

Matthias Felleisen. 1990. On the Expressive Power of Programming
Languages. In ESOP 90, 3rd European Symposium on Programming,
Copenhagen, Denmark, May 15-18, 1990, Proceedings (Lecture Notes in
Computer Science), Neil D. Jones (Ed.), Vol. 432. Springer, 134-151.
Martin Fowler. 2005. Language Workbenches: The Killer-App
for Domain Specific Languages? https://doi.org/articles/
languageWorkbench.html

Todd J. Green. 2015. LogiQL: A Declarative Language for Enterprise
Applications. In Proceedings of the 34th ACM Symposium on Principles
of Database Systems, PODS 2015, Melbourne, Victoria, Australia, May
31 - June 4, 2015, Tova Milo and Diego Calvanese (Eds.). ACM, 59-64.
https://doi.org/10.1145/2745754.2745780

Danny M. Groenewegen, Zef Hemel, Lennart C. L. Kats, and Eelco
Visser. 2008. WebDSL: a domain-specific language for dynamic web ap-
plications. In Companion to the 23rd Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2008, October 19-13, 2007, Nashville, TN, USA, Gail E. Harris
(Ed.). ACM, 779-780. https://doi.org/10.1145/1449814.1449858
Ashish Gupta and Inderpal Singh Mumick. 1995. Maintenance of
Materialized Views: Problems, Techniques, and Applications. IEEE
Data Eng. Bull. 18, 2 (1995), 3-18. https://doi.org/db/journals/debu/
GuptaM95.html

Matthew A. Hammer, Yit Phang Khoo, Michael Hicks, and Jeffrey S.
Foster. 2014. Adapton: composable, demand-driven incremental com-
putation. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI °14, Edinburgh, United Kingdom -
June 09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.).
ACM, 18. https:/doi.org/10.1145/2594291.2594324

Daco Harkes, Danny M. Groenewegen, and Eelco Visser. 2016. IceDust:
Incremental and Eventual Computation of Derived Values in Persis-
tent Object Graphs. In 30th European Conference on Object-Oriented
Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy (LIPIcs), Shri-
ram Krishnamurthi and Benjamin S. Lerner (Eds.), Vol. 56. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik. https://doi.org/10.4230/
LIPlcs.ECOOP.2016.11

Daco Harkes and Eelco Visser. 2014. Unifying and Generalizing Rela-
tions in Role-Based Data Modeling and Navigation. In Software Lan-
guage Engineering - 7th International Conference, SLE 2014, Visteras,
Sweden, September 15-16, 2014. Proceedings (Lecture Notes in Com-
puter Science), Benoit Combemale, David J. Pearce, Olivier Barais,
and Jurgen J. Vinju (Eds.), Vol. 8706. Springer, 241-260. https:
//doi.org/10.1007/978-3-319-11245-9_14

Daco Harkes and Eelco Visser. 2017. IceDust 2: Derived Bidirectional
Relations and Calculation Strategy Composition. In 31st European
Conference on Object-Oriented Programming, ECOOP 2017, June 19-23,
2017, Barcelona, Spain (LIPIcs), Peter Miiller 0001 (Ed.), Vol. 74. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik. https://doi.org/10.4230/
LIPlcs.ECOOP.2017.14

Tony Hoare. 2009. Null references: The billion dollar mistake. Presen-
tation at QCon London 298 (2009).

Andrzej Hoppe and Jarek Gryz. 2007. Stream Processing in a Relational
Database: a Case Study. In Eleventh International Database Engineering

https://insights.stackoverflow.com/survey/2018
https://insights.stackoverflow.com/survey/2018
https://doi.org/10.1016/S0169-023X(03)00048-X
https://doi.org/10.1016/S0169-023X(03)00048-X
https://doi.org/10.1145/2089155.2089170
https://doi.org/10.1145/2089155.2089170
https://doi.org/10.1145/505145.505147
https://doi.org/10.1145/505145.505147
https://doi.org/10.1145/2618243.2618285
https://doi.org/link/service/series/0558/bibs/2117/21170325.htm
https://doi.org/link/service/series/0558/bibs/2117/21170325.htm
https://doi.org/10.1145/581478.581482
https://doi.org/10.1145/581478.581482
https://doi.org/db/conf/dolap/ChanLF99.html
https://doi.org/db/conf/dolap/ChanLF99.html
https://doi.org/10.1145/2048066.2048100
https://doi.org/10.1145/2372251.2372256
https://doi.org/10.1007/978-3-319-02654-1_11
https://doi.org/10.1007/978-3-319-02654-1_11
https://doi.org/articles/languageWorkbench.html
https://doi.org/articles/languageWorkbench.html
https://doi.org/10.1145/2745754.2745780
https://doi.org/10.1145/1449814.1449858
https://doi.org/db/journals/debu/GuptaM95.html
https://doi.org/db/journals/debu/GuptaM95.html
https://doi.org/10.1145/2594291.2594324
https://doi.org/10.4230/LIPIcs.ECOOP.2016.11
https://doi.org/10.4230/LIPIcs.ECOOP.2016.11
https://doi.org/10.1007/978-3-319-11245-9_14
https://doi.org/10.1007/978-3-319-11245-9_14
https://doi.org/10.4230/LIPIcs.ECOOP.2017.14
https://doi.org/10.4230/LIPIcs.ECOOP.2017.14

SLE ’18, November 5-6, 2018, Boston, MA, USA

[25]

[26]

(27]

[28

—

[29]

(30]

(31]

(32]

(33

[t}

(34

[l

(35]

(36]

(37]

and Applications Symposium (IDEAS 2007), September 6-8, 2007, Banff,
Alberta, Canada. IEEE Computer Society, 216-224. https://doi.org/10.
1109/IDEAS.2007.41

Daniel Jackson. 2006. Software Abstractions - Logic, Language, and
Analysis. MIT Press. https://doi.org/catalog/item/default.asp?ttype=
2&tid=10928

Lennart C. L. Kats and Eelco Visser. 2010. The Spoofax language
workbench: rules for declarative specification of languages and IDEs.
In Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA
2010, William R. Cook, Siobhan Clarke, and Martin C. Rinard (Eds.).
ACM, Reno/Tahoe, Nevada, 444-463. https://doi.org/10.1145/1869459.
1869497

Yannis Katsis, Kian Win Ong, Yannis Papakonstantinou, and Kevin Ke-
liang Zhao. 2015. Utilizing IDs to Accelerate Incremental View Mainte-
nance. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, Melbourne, Victoria, Australia, May 31 - June
4, 2015, Timos Sellis, Susan B. Davidson, and Zachary G. Ives (Eds.).
ACM, 1985-2000. https://doi.org/10.1145/2723372.2750546
Christoph Koch, Yanif Ahmad, Oliver Kennedy, Milos Nikolic, Andres
Notzli, Daniel Lupei, and Amir Shaikhha. 2014. DBToaster: higher-
order delta processing for dynamic, frequently fresh views. VLDB J.
23,2 (2014), 253-278. https://doi.org/10.1007/s00778-013-0348-4
Jixue Liu, Millist W. Vincent, and Mukesh K. Mohania. 2003. Maintain-
ing Views in Object-Relational Databases. Knowl. Inf. Syst. 5, 1 (2003),
50-82. https://doi.org/10.1007/s10115-002-0067-z

Yanhong A. Liu, Jon Brandvein, Scott D. Stoller, and Bo Lin. 2016.
Demand-driven incremental object queries. In Proceedings of the 18th
International Symposium on Principles and Practice of Declarative Pro-
gramming, Edinburgh, United Kingdom, September 5-7, 2016, James
Cheney and German Vidal (Eds.). ACM, 228-241. https://doi.org/10.
1145/2967973.2968610

Joseph E McGrath. 1995. Methodology matters: Doing research in
the behavioral and social sciences. In Readings in Human—Computer
Interaction. Elsevier, 152-169.

Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael Is-
ard. 2013. Differential Dataflow. In CIDR 2013, Sixth Biennial Conference
on Innovative Data Systems Research, Asilomar, CA, USA, January 6-9,
2013, Online Proceedings. www.cidrdb.org. https://doi.org/cidr2013/
Papers/CIDR13_Paper111.pdf

Hiroaki Nakamura. 2001. Incremental Computation of Complex Ob-
jects Queries. In OOPSLA. 156-165.

Elizabeth J. O Neil. 2008. Object/relational mapping 2008: hibernate
and the entity data model (edm). In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2008, Van-
couver, BC, Canada, June 10-12, 2008, Jason Tsong-Li Wang (Ed.). ACM,
1351-1356. https://doi.org/10.1145/1376616.1376773

Tom Rothamel and Yanhong A. Liu. 2008. Generating incremental
implementations of object-set queries. In Generative Programming
and Component Engineering, 7th International Conference, GPCE 2008,
Nashville, TN, USA, October 19-23, 2008, Proceedings, Yannis Smarag-
dakis and Jeremy G. Siek (Eds.). ACM, 55-66. https://doi.org/10.1145/
1449913.1449923

Per Runeson, Martin Host, Austen Rainer, and Bjorn Regnell. 2012.
Case Study Research in Software Engineering - Guidelines and Examples.
Wiley. https://doi.org/WileyCDA/WileyTitle/productCd-1118104358.
html

Miroslaw Staron. 2006. Adopting Model Driven Software Devel-
opment in Industry - A Case Study at Two Companies. In Model

96

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Daco C. Harkes, Elmer van Chastelet, and Eelco Visser

Driven Engineering Languages and Systems, 9th International Con-
ference, MoDELS 2006, Genova, Italy, October 1-6, 2006, Proceedings
(Lecture Notes in Computer Science), Oscar Nierstrasz, Jon Whittle,
David Harel, and Gianna Reggio (Eds.), Vol. 4199. Springer, 57-72.

https://doi.org/10.1007/11880240_5
Tamas Szabd, Sebastian Erdweg, and Markus Volter. 2016. IncA: a

DSL for the definition of incremental program analyses. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software
Engineering, ASE 2016, Singapore, September 3-7, 2016, David Lo, Sven
Apel, and Sarfraz Khurshid (Eds.). ACM, 320-331. https://doi.org/10.
1145/2970276.2970298

Arie van Deursen. 1997. Domain-Specific Languages versus Object-
Oriented Frameworks: A Financial Engineering Case Study. In Proceed-
ings Smalltalk and Java in Industry and Academia, STJA’97. Ilmenau
Technical University.

Arie van Deursen and Paul Klint. 1998. Little languages: little
maintenance? Journal of Software Maintenance 10, 2 (1998), 75—
92. https://doi.org/10.1002/(SIC1)1096-908X(199803/04) 10:2&It;75::
AID-SMR168>3.0.CO;2-5

Todd L Veldhuizen. 2013. Incremental maintenance for leapfrog
triejoin. arXiv preprint arXiv:1303.5313 (2013).

Jan Vitek and Tomas Kalibera. 2012. R3: Repeatability, reproducibility
and rigor. ACM SIGPLAN Notices 47, 4a (2012), 30-36.

Markus Volter, Sebastian Benz, Christian Dietrich, Birgit Engel-
mann, Mats Helander, Lennart C. L. Kats, Eelco Visser, and Guido
Wachsmuth. 2013. DSL Engineering - Designing, Implementing and
Using Domain-Specific Languages. dslbook.org. https://doi.org/
INTERNALSTYLE-FILEERROR

Markus Vélter, Arie van Deursen, Bernd Kolb, and Stephan Eberle.
2015. Using C language extensions for developing embedded software:
a case study. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA,
October 25-30, 2015, Jonathan Aldrich and Patrick Eugster (Eds.). ACM,
655-674. https://doi.org/10.1145/2814270.2814276

Robert J. Walker and Kevin Viggers. 2004. Implementing protocols via
declarative event patterns. In Proceedings of the 12th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2004,
Newport Beach, CA, USA, October 31 - November 6, 2004, Richard N.
Taylor and Matthew B. Dwyer (Eds.). ACM, 159-169. https://doi.org/
10.1145/1029894.1029918

Khim Teck Yeo. 2002. Critical failure factors in information system
projects. International journal of project management 20, 3 (2002),
241-246.

Robert K Yin. 2013. Validity and generalization in future case study
evaluations. Evaluation 19, 3 (2013), 321-332.

Kai Zeng, Sameer Agarwal, and Ion Stoica. 2016. iOLAP: Managing
Uncertainty for Efficient Incremental OLAP. In Proceedings of the 2016
International Conference on Management of Data, SIGMOD Conference
2016, San Francisco, CA, USA, June 26 - July 01, 2016, Fatma Ozcan,
Georgia Koutrika, and Sam Madden (Eds.). ACM, 1347-1361. https:
//doi.org/10.1145/2882903.2915240

Weijie Zhao, Florin Rusu, Bin Dong, Kesheng Wu, and Peter Nugent.
2017. Incremental View Maintenance over Array Data. In Proceedings
of the 2017 ACM International Conference on Management of Data,
SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017, Semih
Salihoglu, Wenchao Zhou, Rada Chirkova, Jun Yang 0001, and Dan
Suciu (Eds.). ACM, 139-154. https://doi.org/10.1145/3035918.3064041

https://doi.org/10.1109/IDEAS.2007.41
https://doi.org/10.1109/IDEAS.2007.41
https://doi.org/catalog/item/default.asp?ttype=2&tid=10928
https://doi.org/catalog/item/default.asp?ttype=2&tid=10928
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/2723372.2750546
https://doi.org/10.1007/s00778-013-0348-4
https://doi.org/10.1007/s10115-002-0067-z
https://doi.org/10.1145/2967973.2968610
https://doi.org/10.1145/2967973.2968610
https://doi.org/cidr2013/Papers/CIDR13_Paper111.pdf
https://doi.org/cidr2013/Papers/CIDR13_Paper111.pdf
https://doi.org/10.1145/1376616.1376773
https://doi.org/10.1145/1449913.1449923
https://doi.org/10.1145/1449913.1449923
https://doi.org/WileyCDA/WileyTitle/productCd-1118104358.html
https://doi.org/WileyCDA/WileyTitle/productCd-1118104358.html
https://doi.org/10.1007/11880240_5
https://doi.org/10.1145/2970276.2970298
https://doi.org/10.1145/2970276.2970298
https://doi.org/10.1002/(SICI)1096-908X(199803/04)10:2<75::AID-SMR168>3.0.CO;2-5
https://doi.org/10.1002/(SICI)1096-908X(199803/04)10:2<75::AID-SMR168>3.0.CO;2-5
https://doi.org/INTERNAL STYLE-FILE ERROR
https://doi.org/INTERNAL STYLE-FILE ERROR
https://doi.org/10.1145/2814270.2814276
https://doi.org/10.1145/1029894.1029918
https://doi.org/10.1145/1029894.1029918
https://doi.org/10.1145/2882903.2915240
https://doi.org/10.1145/2882903.2915240
https://doi.org/10.1145/3035918.3064041

	Abstract
	1 Introduction
	2 Background
	2.1 Web-based Information System Engineering
	2.2 Incremental Computing Languages and IceDust
	2.3 Language Engineering with Spoofax

	3 Case Study Setup
	3.1 Research Questions
	3.2 Data Collected

	4 Case Study Context
	4.1 WebLab
	4.2 Software Architecture
	4.3 Server Setup
	4.4 Development Timeline
	4.5 Tools
	4.6 Organization and Team

	5 The WebLab IceDust Implementation
	5.1 Overall Structure and Migration
	5.2 Size of the System
	5.3 Use of IceDust's Features
	5.4 IceDust Feature Requests

	6 IceDust Evaluation
	6.1 RQ-Validatability
	6.2 RQ-Performance
	6.3 RQ-Effort

	7 Discussion
	7.1 Internal Validity
	7.2 Conclusion Validity
	7.3 Construct Validity
	7.4 External Validity
	7.5 Repeatability
	7.6 Research Implications

	8 Related Work
	8.1 Case Studies in Incremental Computing
	8.2 Case Studies with DSLs
	8.3 ICLs for Information Systems

	9 Conclusion
	References

