
Scalable Incremental Building with Dynamic Task Dependencies
Gabriël Konat

Delft University of Technology
Delft, The Netherlands
g.d.p.konat@tudelft.nl

Sebastian Erdweg
Delft University of Technology

Delft, The Netherlands
s.t.erdweg@tudelft.nl

Eelco Visser
Delft University of Technology

Delft, The Netherlands
e.visser@tudelft.nl

ABSTRACT
Incremental build systems are essential for fast, reproducible soft-
ware builds. Incremental build systems enable short feedback cycles
when they capture dependencies precisely and selectively execute
build tasks efficiently. A much overlooked feature of build systems
is the expressiveness of the scripting language, which directly influ-
ences the maintainability of build scripts. In this paper, we present a
new incremental build algorithm that allows build engineers to use
a full-fledged programming language with explicit task invocation,
value and file inspection facilities, and conditional and iterative
language constructs. In contrast to prior work on incrementality for
such programmable builds, our algorithm scales with the number
of tasks affected by a change and is independent of the size of the
software project being built. Specifically, our algorithm accepts a
set of changed files, transitively detects and re-executes affected
build tasks, but also accounts for new task dependencies discov-
ered during building. We have evaluated the performance of our
algorithm in a real-world case study and confirm its scalability.

CCS CONCEPTS
• Software and its engineering→ Software configurationman-
agement and version control systems;

KEYWORDS
scalable, incremental, build, dynamic task dependency

ACM Reference Format:
Gabriël Konat, Sebastian Erdweg, and Eelco Visser. 2018. Scalable Incremen-
tal Building with Dynamic Task Dependencies. In Proceedings of the 2018
33rd ACM/IEEE International Conference on Automated Software Engineering
(ASE ’18), September 3–7, 2018, Montpellier, France. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3238147.3238196

1 INTRODUCTION
Virtually every large software project employs a build system to
resolve dependencies, compile source code, and package binaries.
One great feature of build systems besides build automation is
incrementality: After a change to a source or configuration file,
only part of a build script needs re-execution while other parts can
be reused from a previous run. Indeed, incremental build systems

ASE ’18, September 3–7, 2018, Montpellier, France
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5937-5/18/09.
https://doi.org/10.1145/3238147.3238196

are a key enabler for short feedback cycles. The reliable and long-
term maintainable usage of incremental build systems requires the
following three properties:

• Efficiency: The most obvious requirement is that rebuilds
must be efficient. That is, the amount of time required for a
rebuild must be proportional to how many build tasks are
affected by a change. Specifically, a small change affecting
few tasks should only incur a short rebuild time.
• Precision: An incremental rebuild is only useful if it yields
the exact same result as a clean build. To this end, incre-
mental build systems must capture precise dependency in-
formation about file usage and task invocations. Make-like
build systems do not offer means for capturing precise de-
pendencies. Instead, over-approximation (*.h) leads to inef-
ficiency because of considering too many files, and under-
approximation (mylib.h) leads to incorrect rebuilds because
of missing dependencies (e.g., other.h). Precise dependency
information is required for efficient and correct rebuilds.
• Expressiveness: Like all software artifacts, build scripts
grow during a project’s lifetime [19] and require increasing
maintenance [17]. Therefore, build scripts should be writ-
ten in expressive languages, avoiding accidental complexity.
That is, build scripting languages should not require build
engineers to apply complicated design patterns (e.g., recur-
sive [20] or generated Makefiles) for expressing common
scenarios.

Current incremental build systems put a clear focus on efficiency
and precision, but fall short in terms of expressiveness. In particular,
in order to support incremental rebuilds, current systems impose a
strict separation of configuration and build stages. All variability
of the build process needs to be fixed in the configuration stage,
whereas the build stage merely executes a pre-configured build
plan. This model contradicts reality, where how to build an artifact
depends on the execution of other build tasks. We have observed
two sources of variability in building. First, based on the result of
other tasks, conditional building selects one of multiple build tasks
to process a certain input. Second, based on the result of other tasks,
iterative building invokes build tasks multiple times on different
inputs. In both cases, dependencies on task invocations only emerge
during the build; build engineers cannot describe these dynamic
dependencies in the configuration phase. We illustrate a concrete
example in Section 2.

A solution to the expressiveness problem is to provide build
engineers with a full-fledged programming language. In such a
system, build tasks are procedures that can invoke other build tasks
in their body. Build tasks can inspect the output of invoked tasks
and use that to conditionally and iteratively invoke further tasks.
The problem of such a programmable build system is that it is

76

https://doi.org/10.1145/3238147.3238196
https://doi.org/10.1145/3238147.3238196
rodkin
Typewritten Text
This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/

ASE ’18, September 3–7, 2018, Montpellier, France Gabriël Konat, Sebastian Erdweg, and Eelco Visser

difficult to achieve incrementality. We are only aware of a single
build system that is both programmable and incremental: Pluto [3].
Unfortunately, the incremental build algorithm of Pluto has an
important limitation: To check which tasks need re-execution, Pluto
needs to traverse the entire dependency graph of the previous build
and has to touch every file that was read or written in the previous
build. This contradicts our first requirement, efficiency, because the
rebuild time of Pluto depends on the size of the software project
more than it depends on the size of the change. In particular, even
when no file was changed, Pluto’s algorithm requires seconds to
determine that indeed no task requires re-execution. We illustrate
Pluto’s algorithm using an example in Section 2.

In this paper, we design, implement, and evaluate a new in-
cremental build algorithm for build systems with dynamic task
dependencies. While Pluto’s algorithm only takes the old depen-
dency graph as input and traverses it top-down, our algorithm also
takes a set of changed files and primarily traverses the dependency
graph bottom-up. We can collect changed files, for example, from
IDEs that manage their workspace or by using a file system watch-
dog. Our algorithm uses the changed files to drive rebuilding of
tasks, only loading and executing those tasks that are (transitively)
affected by a change. However, due to dynamic task dependencies,
the dependency graph can change from one build to the next one.
Our build algorithm accounts for newly discovered and deleted task
dependencies by mixing bottom-up and top-down traversals.

Our new incremental build algorithm provides significant perfor-
mance improvements when changes are small. We have conducted
a real-world case study on the Spoofax language workbench, a tool
built for developing domain-specific languages (DSLs). The build
script of Spoofax processes DSL specification files and generates
interpreters, compilers, and IDE plug-ins for them. We found that
our algorithm successfully eliminates the overhead of large depen-
dency graphs and provides efficient rebuilding that is proportional
to the change size.

In summary, we make the following contributions. We review
programmatic build scripts, incremental building with Pluto, and
why this does not scale (Section 2). We describe our key idea of
bottom-up incremental building, and what is needed to make it
work (Section 3)We present our hybrid incremental build algorithm
that mixes bottom-up and top-down building (Section 4), and briefly
discuss its implementation (Section 5).We evaluate the performance
of the hybrid algorithm against Pluto’s algorithm with a case study
on the Spoofax language workbench (Section 6).

2 BACKGROUND AND PROBLEM
STATEMENT

Most build systems provide a declarative scripting language. Declar-
ative languages are great as they let developers focus on what to
compute rather than how to compute it. However, we argue that
declarativity is misdirected when it comes to describing sophisti-
cated build processes that involve conditional and iterative task
application.

For example, consider the build script in Figure 1. We wrote this
build script in the PIE build script language [16], which mostly pro-
vides standard programming language concepts. That is, the build
script performs iterative building by defining and calling functions

func main() -> string {
val config = parseYaml(./config.yaml)
val src = config.srcDir
if (config.checkStyle) {

val styleOk = checkStyle(src)
if (config.failOnStyle && !styleOk)

return "style error"
}
val userTests = ./test/**
val genTests = genTests(src, ./test-gen)
var failed = 0
for (test <- userTests ++ genTests) {

val testOk = runTest(test)
if (!testOk) failed += 1

}
return "Failed tests: " + failed

}
func parseYaml(p: path) -> Config {...}
func checkStyle(src: path) -> bool {...}
func genTests(src: path, trg: path) -> path* {...}
func runTest(test: path) -> int {...}

Figure 1: Build script that invokes tasks conditionally and
iteratively at build time.

(tasks) like main and parseYaml, stores results of tasks in local
variables such as config and src which can be immediately used
by subsequent tasks, and involves conditional building with control
structures like if and for. By and large, our build script is a nor-
mal program that happens to handle file paths and invoke external
processes to generate and run tests. But how can we execute such
a programmatic build script incrementally?

Most build systems require declarative specifications of build
tasks for this reason: to support efficient incremental rebuilds. How-
ever, Erdweg et al. demonstrated that it is also possible to incre-
mentally execute programmatic build scripts, with Pluto [3], a build
system that incrementally executes build scripts written in Java.
The PIE language we used in our example is an alternative front-end
to Pluto [16].

The build algorithm of Pluto constructs a dependency graph
of a build while the build script runs. For example, consider the
dependency graph of our example script in Figure 2. The depen-
dency graph contains a node for each invoked task and for each
read or written file. Edges between nodes encode dependencies. A
task depends on the tasks it invokes and on the files it reads or
writes. Moreover, when a task reads a file that was generated by
another task, the reading task depends on the generating task such
that the generating task is executed first. While not shown in our
graph, both task-task edges and task-file edges are labeled with
stamps (e.g., timestamp, hashsum) that determine if the task output
respectively file content is up-to-date.

The incremental build algorithm of Pluto takes the dependency
graph of the previous run and selectively reruns tasks to ensure con-
sistency of the build. The dependency graph of a build is consistent
if for each invoked task (i) all read and written files are up-to-date
and (ii) the outputs of all called tasks are up-to-date. An incremental

77

Scalable Incremental Building with Dynamic Task Dependencies ASE ’18, September 3–7, 2018, Montpellier, France

main

parse
Yaml(..)

check
Style(..)

gen
Tests(..)

./config
.yaml

./src/A ./src/B ./src/
B_aux

./test-
gen/
A

./test-
gen/
B

./test/
X

runTest

main

parse
Yaml(..)

check
Style(..)

gen
Tests(..)

./config
.yaml

./src/A ./src/B ./src/
B_aux

./test-
gen/
A

./test-
gen/
B

./test/
X

runTest

main

parse
Yaml(..)

check
Style(..)

gen
Tests(..)

./config
.yaml

./src/A ./src/B ./src/
B_aux

./test-
gen/
A

./test-
gen/
B

./test/
X

runTest

./src/C

./test-
gen/
C

runTest

Initial dependency graph Change C1

Change C2 Change C3

reads file
writes file
requires task
affected by change

main

parse
Yaml(..)

gen
Tests(..)

./config
.yaml

./src/A ./src/B ./src/
B_aux

./test-
gen/
A

./test-
gen/
B

./test/
X

runTest

check
Style(..)

Figure 2: The dependency graph of a build captures task and file dependencies and is the basis for incremental building.

build algorithm is correct if it always restores consistency [3]. Or
intuitively: a correct incremental build algorithm yields the same
result as a clean build. The challenge is to restore consistency with
as little computational effort as possible.

For example, let us assume the initial dependency graph (top-left
in Figure 2) is consistent to begin with. We discuss three different
changes C1–C3:

• C1: If we change file config.yaml to turn off style check-
ing, task main becomes inconsistent since the stamp of its
file dependency changes (e.g., newer timestamp, changed
hashsum). We can restore consistency by rerunning tasks
parseYaml and main only; all other tasks remain consistent
since they neither invoke main nor read files written by main.
The incremental build yields a new dependency graph (top-
right in Figure 2), where the new invocation of main does
not depend on checkStyle anymore.

• C2: If instead, we change the content of user test ./test/X,
task runTest(./test/X) becomes inconsistent and needs
rerunning. Since task main calls runTest(./test/X), it needs
rerunning if the value returned by runTest changes such
that we obtain a different number of failed tests. Either
way, the dependency graph remains unaffected (bottom-left
in Figure 2).
• C3: Finally, if we add a source file ./src/C, tasks checkStyle
and genTests are affected because they depend on the di-
rectory ./src. If the new file has a style error, this affects
main and yields a new dependency graph where no testing
occurs (not shown). Otherwise, let us assume genTests pro-
duces a new test ./test-gen/C for the added file, which
affects main’s scan of directory test-gen. During the sub-
sequent rerun of main, we discover a new task invocation
runTest(./test-gen/C) (bottom-right in Figure 2).

78

ASE ’18, September 3–7, 2018, Montpellier, France Gabriël Konat, Sebastian Erdweg, and Eelco Visser

The incremental build algorithm of Pluto can handle these and
any other changes correctly. Moreover, the algorithm is optimally
incremental in the sense that it only executes a task if absolutely
necessary. The basic idea of the algorithm is to start at the root
node(s) of the dependency graph, to traverse it depth-first, and to
interleave consistency checking and rerunning. In particular, while
rerunning a task that invokes another task, if the invoked task exists
in the dependency graph, continue with consistency checking of
the invoked task and only rerun it if necessary. This interleaving
of consistency checking and rerunning is what enables support for
conditional and iterative task invocations.

Problem Statement. The incremental build algorithm of Pluto
has an important limitation. Irrespective of the changed files, it has
to traverse the entire dependency graph to check consistency and
to discover tasks that need rerunning. While that may be fine for
larger changes that affect large parts of the graph like C3, the over-
head for small-impact changes like C2 is significant. Especially in
interactive settings, where developers routinely trigger sequences
of small-impact changes, this overhead can quickly render the sys-
tem unresponsive. The problem is that the algorithm does not scale
down to small changes when scaling up to large dependency graphs.

Our goal is to design, realize, and evaluate a new incremental
build algorithm for programmatic build scripts that scales in the
size of a change. That is, rebuild times should be proportional to
the impact a change has on the overall build. In particular, rebuild
times should be independent of the size of the dependency graph.
These requirements preclude a full traversal of the dependency
graph to discover affected tasks as done by Pluto. Instead, our new
algorithm takes the set of changed files as input and only ever visits
affected tasks.

3 KEY IDEA AND CHALLENGES
The key idea to increasing the scalability of the Pluto algorithm is to
execute tasks bottom-up. In this section, we motivate this approach,
and we discuss the corner cases that require adjustments to a pure
bottom-up algorithm.

3.1 Bottom-Up Traversal
The key problem of the Pluto build algorithm is that it visits and
checks tasks that are ultimately unaffected. For example, in change
C2 in Section 2, only a single task (runTest) is affected by the
change to file ./test/X. However, Pluto will visit and check all
reachable tasks in a top-down depth-first traversal, including the
tasks that are not affected by the change (parseYaml, checkStyle,
and genTests). Establishing that these tasks are unaffected is ex-
pensive, as our benchmarks demonstrate (Section 6).

To make the algorithm scale, it should only visit the nodes of
the dependency graph that are actually affected by a change. The
changes that trigger a re-build are to files, which are at the leaves of
the dependency graph. Tasks that need to be recomputed depend
directly or indirectly on such file changes. Instead of looking for
tasks that may indirectly depend on a change and gradually getting
closer to the actual change, as Pluto does, why not start with those
changes and the tasks that depend on them?

The key idea of our algorithm is to traverse the dependency graph
bottom-up, driven by file changes, only visiting and checking af-
fected tasks. The algorithm first executes the tasks that are directly
affected by changed files. For example, in change C2, file ./test/X
changes, which directly affects task runTest(./test/X), which
must therefore be re-executed. Tasks can also be indirectly affected
by a file change, namely when it reads a file produced by an affected
task or when it reads the output value of an affected task. For exam-
ple, in changeC3, file ./src/C is added, which triggers re-execution
of genTests, which yields a new output value to main, which thus
is indirectly affected, re-executes, and creates a new runTest task.
A subsequent edit of file ./src/C triggers genTests again, which
produces the same value as before but updates the generated file
./test-gen/C, which affects the corresponding runTest task (the
main task is not affected this time).

Thus, a bottom-up traversal executes tasks that are affected by
changed files or by other affected tasks, following a path from the
changed leaves of the dependency graph to the root(s). However,
a pure bottom-up traversal is not adequate to support program-
matic build scripts with dynamic dependencies. We discuss the
adjustments that are necessary to realize an adequate algorithm.

3.2 Top-Down Initialization
In order to perform a bottom-up traversal over the dependency
graph, we need a dependency graph to start with. Therefore, we
start with Pluto’s top-down algorithm to obtain the initial depen-
dency graph. This is efficient, since every task is affected in the
initial build.

3.3 Early Cut-Off
By default, a bottom-up traversal takes the transitive closure of
dependencies, re-executing all tasks on the path from a changed file
to the root(s) of the dependency graph. However, re-execution of a
task does not always lead to a new result. If the result was the same
as before, the path to the root can be cut off early. For example, in
C2 main depends on runTest(./test/X), which depends on the
changed ./test/X file. So, do we need to re-execute main? That
depends on the output of task runTest(./test/X). If the result
is a different (integer) value than before, the number of tests that
fail changes, and main should be re-executed Otherwise, main is
not affected and we can cut off the build early1, as shown in the
bottom-left part of Figure 2.

3.4 Order of Recomputation
Another potential problem of naive bottom-up evaluation is that
tasks may be executed multiple times. For example, in change
C3, main depends on two existing affected tasks: checkStyle and
genTests. A possible execution trace when checkStyle does affect
main (not shown in the figure), is to execute checkStyle, then main
which is affected by checkStyle, then execute genTests, and then
execute main again because it is affected by genTests. Executing a
task multiple times is not only inefficient, but also causes glitches:
inconsistent results that are exposed to users.

1In a real-world build script, runTest would output a report of which tests fail and
why, and main would be re-executed whenever this changes. We support this, but
chose to keep the example from Section 2 simple for demonstration purposes.

79

Scalable Incremental Building with Dynamic Task Dependencies ASE ’18, September 3–7, 2018, Montpellier, France

To avoid such re-executions, we should ensure that all affected
dependencies of a task are executed before the task itself. Instead
of eagerly executing tasks when encountered during a bottom-up
traversal, we schedule tasks in a priority queue, which is topologi-
cally sorted according to the dependency graph. Until the queue is
empty, scheduled tasks are removed from the front of the queue and
executed. The topological ordering of the priority queue ensures
that task dependencies are executed before the task itself.

3.5 Dynamic Dependencies
The final challenge is to support dynamic dependencies during a
bottom-up traversal. Consider change C3 again, where a new task
runTests(./test-gen/C) is discovered by main. A bottom-up tra-
versal can never detect such a dynamic dependency, since it only
has access to the dependency graph of the previous run. To remedy
this, we temporarily switch to top-down depth-first building when
executing a task, so that the task can discover dependencies to new
tasks, discover dependencies to existing tasks, or remove existing
dependencies.

When discovering a dependency to a new task, top-down depth-
first building continues recursively by (eagerly) executing the new
task. For example, in change C3, task main is (indirectly) affected
and thus is built in a top-down manner (after its dependencies
checkStyle and genTests have been built), which recursively calls
task runTests(./test-gen/C) and registers a dependency to it.
Furthermore, when a dependency is discovered to a task t that exists
in the old dependency graph, it might be affected already. That is, t
and dependencies of t may have been scheduled in the queue. We
cannot execute t before executing its dependencies. Therefore, we
temporarily switch back to bottom-up building, executing depen-
dencies of t that are scheduled in the queue, until t itself is executed
or found unaffected. Then we switch back to top-down building
and continue executing the caller. Finally, when a dependency is
removed (i.e., dependency to a task that was made in the previous
run, but not in this run), the dependency graph is updated, but no
further action is taken.

3.6 Dependency Graph Validation
As in the Pluto algorithm, we also need to enforce validity of the
dependency graph by detecting overlapping generated files, hidden
task dependencies, and cyclic tasks. An overlapping generated file
occurs when more than one task generates (creates or writes to)
the same file. This makes it unclear in which order those tasks
must be executed to bring the file into a consistent state, and is
therefore disallowed. Furthermore, a hidden dependency occurs
when a task requires (reads) a file that was generated by another
task, without the requiring task depending on the generator task.
Such a dependency must be made explicit, so that the generated file
is updated by the generator task before being read by the requiring
task. Finally, a task is cyclic when it (indirectly) calls itself. We
disallow cyclic tasks to ensure termination of the build algorithm.
We check these invariants on-the-fly while constructing the new
dependency graph for subsequent incremental builds.

1: var Tq ; var Te ; var Oc ; var DGnew
2: function buildNewTask(t , DGold)
3: Te := ∅; Oc := ∅; DGnew := DGold
4: exec(t)
5: function buildWithChangedFiles(F , DGold)
6: Te := ∅; Oc := ∅; DGnew := DGold
7: Tq := new PriorityQueue(DGold.depOrder())
8: schedAffByFiles(F, DGold)

9: while Tq , ∅ do
10: execAndSchedule(Tq .poll(), DGold)

Figure 3: Algorithm: Main build functions.

1: function execAndSchedule(t , DGold)
2: val r := exec(t)
3: schedAffByFiles(r .дenF iles, DGold)

4: schedAffCallersOf(t, r .output, DGold)

5: return r .output
6: function schedAffByFiles(F , DGold)
7: for f ← F do
8: for (stamp, t) ← DGold .requireesOf(f) do
9: if ¬stamp .isConsistent(f) then
10: Tq := Tq ∪ t
11: if (stamp, t) ← DGold .generatorOf(f) then
12: if ¬stamp .isConsistent(f) then
13: Tq := Tq ∪ t
14: function schedAffCallersOf(t , o , DGold)
15: for (stamp, tcall) ← DGold .callersOf(t) do
16: if ¬stamp .isConsistent(o) then
17: Tq := Tq ∪ tcall

Figure 4: Algorithm: Bottom-up Building.

1: function exec(t)
2: if t ∈ Te then abort
3: Te := Te ∪ t ; val r := t .run(); Te := Te \ t
4: DGnew := DGnew ∪ r ; validate(t, r); observe(t, r .output)
5: Oc [t] := r .output ; return r .output
6: function require(t , DGold)
7: if o ← Oc [t] then return o
8: else if t ∈ DGold then return requireNow(t, DGold)

9: else return exec(t)
10: function requireNow(t , DGold)
11: while val tmin := Tq .leastDepFromOrEq(t) do
12: Tq := Tq \ tmin
13: val o := execAndSchedule(tmin, DGold)

14: if t = tmin then return o
15: val o := DGold .outputOf(t)
16: observe(t, o); Oc [t] := o ; return o
17: function validate(t , r)
18: for f ← r .дenF iles do
19: for (_, tдen) ← DGnew .generatorOf(f) do
20: if t , tдen then abort

21: for f ← r .r eqF iles do
22: for (_, tдen) ← DGnew .generatorOf(f) do
23: if ¬DGnew .callsTaskTr(t, tдen) then abort

Figure 5: Algorithm: Execution, Requirement, and Valida-
tion.

80

ASE ’18, September 3–7, 2018, Montpellier, France Gabriël Konat, Sebastian Erdweg, and Eelco Visser

4 CHANGE-DRIVEN INCREMENTAL
BUILDING

In this section, we present our hybrid algorithm that mixes bottom-
up and top-down incremental building based on the observations
and ideas from the previous section. We present the algorithm in
three parts: main functions (Figure 3), bottom-up building (Figure 4),
and execution (Figure 5). All functions share four global variables
defined at the top of Figure 3. VariableTq is a topologically ordered
priority queue of affected tasks that still need to be executed. Vari-
able Te is a set of currently executing tasks, used to detect cyclic
tasks. Variable Oc is a cache of output values for tasks that have
already been executed. Finally, variable DGnew is the new depen-
dency graph that is constructed from the old dependency graph
and dynamic dependencies on-the-fly.

We provide two entry points to incremental building in Figure 3,
both of which first clear the set of executing tasks Te , clear the
cache Oc , and copy the old dependency graph DGold to DGnew .
Function buildNewTask is the entry point for an initial build. Func-
tion buildNewTask then simply invokes function exec (Figure 5)
to execute the task. We describe exec below.

The second entry point buildWithChangedFiles is more inter-
esting as it initiates bottom-up building. It takes as input a set of
changed file paths F , represented as filesystem path strings such as
./config.yaml, and the old dependency graph DGold . The basic
idea is to schedule and run affected tasks using priority queue Tq
until all affected tasks are up-to-date. To this end, we create a new
priority queue using the task dependencies in DGold as a topologi-
cal ordering. We call function schedAffByFiles (described below)
with the old dependency graph to find all tasks directly affected
by the changed file paths F , and add those tasks to the queue Tq .
The main loop of bottom-up building is the following while-loop:
As long as there are affected tasks in the queue, poll a scheduled
task (retrieve the task at the front and remove it) from the queue,
execute it, and add all tasks affected by it to the queue. Since the
queue is topologically ordered, dependencies of tasks are executed
before the task itself. Unless a task itself does not terminate (for
example by recursively calling new tasks ad infinitum), the queue
becomes empty at some point since cyclic tasks are disallowed,
terminating the algorithm.

4.1 Bottom-Up Building
Whenever a task occurs in the priority queue Tq , it is definitely
affected (directly or indirectly) by changed files. Hence, no further
consistency check is necessary. Function execAndSchedule in Fig-
ure 4 accepts an affected task, runs it unconditionally using exec,
and schedules new tasks based on the generated files and output
value of the executed task. If a task does not change or create new
generated files, nor produce a new output value, no new tasks will
be scheduled and building may be cut off early.

Function schedAffByFiles schedules tasks based on changed
file paths F . If task t requires a changed file and the stamp stamp has
changed (is inconsistent) then t is affected by the change to f and is
scheduled by adding it to Tq . Analogously, if a task generates a file
that has changed, it is affected and thus scheduled. A stamp contains
a summary of a file’s content, such as the last modification date or a
hash, and is used to efficiently checkwhether a file has changedwith

isConsistent. For example, when using the file’s modification date
as a stamp, we compare the modification date in the stamp, with
the current modification date of the file on the local filesystem, and
consider the file changed if the modification date is different. We
use the old dependency graph DGold (computed in a previous run
of the algorithm) to find tasks that require a file (requireesOf), and
to find the task that generates a file (generatorOf), along with the
stamp that was produced at the time the dependency was created.

Likewise, the schedAffCallersOf function schedules callers
of task t based on changes to its output value o . If tcall has a
dependency to task t , and that dependency is inconsistent with
relation to the new output value o of t , then tcall is affected by
the new output value o and is scheduled. Similarly, we use a stamp
of the output value, which could be the full output value, such as
an integer representing the number of failing tests, or a summary
of the value such as a hash, and compare the stamp with the new
output valuewith isConsistent. Finally, the old dependency graph
DGold is used to find callers of a task with callersOf.

4.2 Execution, Requirement, and Validation
Function exec (Figure 5) executes the body of t . During task ex-
ecution, a task may require (call) other tasks with the require
function. Therefore, we first need to check if we are already execut-
ing task t , and abort when a cycle is detected. Then, we add t to the
set of executing tasks Te , run the body of the task, and remove t
fromTe . Once execution completes, we update the new dependency
graph DGnew with the result r of executing t . A result r contains
the dynamic dependencies the task made during execution: a set
reqFiles of read files, дenFiles of created or written to files, and a
set reqTasks of other tasks that were called by t ; and the output
value output that the task produced. A dependency graph DG is a
set of those results, where each task has a single result. We then
validate the new dependency graph, call any external observers
of the task’s output with observe, cache the output, and finally
return the output.

We use function exec to execute tasks both during bottom-up
and top-down traversals. While exec is agnostic to the traversal
order, function require must take care to handle tasks required
bottom-up and top-down correctly. We distinguish three cases. If t
was already executed (visited) this run, we return its cached output
value Oc [t]. Otherwise, we check if t was in the old dependency
graph DGold . If task t is new and does not occur in DGold , then
we execute it unconditionally. Note that no existing task in DGold
can depend or be affected by the new task t .

If task t existed before inDGold , we only execute it if it is actually
affected. Since the caller of t awaits the output of t , we use function
requireNow to force its checking and possible execution now. Task
t is affected if it occurs in queue Tq or if any of its dependencies
occurring inTq will affect it later. Function requireNow repeatedly
finds dependency tmin of t that is lowest in the dependency graph
(closes to the leaves). Since the queue only contains affected tasks,
we execute tmin and schedule tasks affected by it. We continue
until either we have executed the required task t , or until no more
dependencies of task t are affected and we can reuse t ’s output value
from the old dependency graph with DGold .outputOf(t). Note
that this latter case always triggers for tasks scheduled bottom-up

81

Scalable Incremental Building with Dynamic Task Dependencies ASE ’18, September 3–7, 2018, Montpellier, France

by buildWithChangedFiles, because their dependencies cannot
occur in Tq anymore.

The validate function incrementally validates the correctness
of the new dependency graph after executing a task t . For a depen-
dency graph to be correct, it may not have overlapping generated
files, nor any hidden dependencies. If another task tдen generates
the same file f as t does, there is an overlapping generated file and
execution is aborted. Furthermore, if t requires a file f without a
(transitive) task dependency on tдen that generates f , there is a
hidden dependency and execution is aborted. In both cases, this
signals that there is an error in the build script.

4.3 Properties
An incremental build algorithm is correct if it produces the exact
same result as a clean build. Therefore, all affected and new tasks
must be executed. Our algorithm is correct for tasks in the old
dependency graph: if a task is affected, it will be scheduled. A task
is affected directly by depending on a changed file, or indirectly
(transitively) by depending on a changed file that an affected task
generates, or by depending on the changed output of an affected
task. All indirectly affected tasks are always found by traversing
the dependency graph bottom-up, through polling the queue and
scheduling affected tasks. Finally, all scheduled tasks are executed.

Our algorithm is also correct for new tasks that are executed
top-down like the Pluto algorithm, which is correct [3]. The only
difference is the reqireNow function which first executes the de-
pendencies of the task, but does eventually execute the task itself.
Therefore, the hybrid algorithm is correct.

For optimality, we only consider and execute affected tasks. For
existing tasks, this is true because only affected tasks scheduled.
New tasks are affected and always executed. However, we onlywant
to execute needed tasks. The hybrid algorithm considers all task in
the old dependency graph as needed. This is an overapproximation,
because it can happen that an affected task is not needed any more
after top-down execution, since a task may remove its dependency
to an affected task. Therefore, theoretically, the hybrid algorithm is
only partially optimal. However, this is a rare case, as shown in the
evaluation in Section 6.

5 IMPLEMENTATION
We have implemented the hybrid algorithm as an alternative exe-
cution algorithm for PIE [16], a system for developing interactive
software development pipelines, consisting of a DSL and API for
implementing interactive pipelines, and a runtime for incremen-
tally executing them. Interactive software development pipelines
are similar to incremental build systems: they are used to incre-
mentally build software artifacts, and also require fast feedback for
usage in interactive environments with many low-impact changes
such as IDEs and code editors. PIE builds forth on Pluto by reusing
its model and algorithm, but provides a concise and expressive DSL
for developing interactive pipelines and build scripts, minimizing
boilerplate in contrast to Pluto’s Java API.

Our algorithm is implemented as a separate executor in the PIE
runtime, fully conforming to its API. That is, we can run existing
PIE build scripts without changes to our algorithm. Furthermore,
since PIE implements the Pluto build algorithm, we can compare

our algorithm against Pluto’s, for the exact same build scripts. PIE,
including our hybrid algorithm, is open source software that can
be found online2.

6 EVALUATION
In this section, we evaluate the performance of the hybrid algorithm,
compared to Pluto’s pure top-down algorithm. We describe our
experimental setup, show the results, interpret them, and discuss
threats to validity.

6.1 Experimental Setup
We compare the performance of the Pluto incremental build al-
gorithm, as implemented in the PIE runtime, against our hybrid
incremental build algorithm, which we have implemented in PIE
runtime.

Build Script. As a build script, we reuse the Spoofax-PIE pipeline,
a reimplementation of a large part of the Spoofax pipeline, which
was used as a case study of PIE [16]. Spoofax [13] is a language
workbench [4] (a set of tools for developing languages) in which lan-
guages are specified in terms of meta-languages, such as SDF [27]
for syntax specification, and NaBL [15, 23, 26] for name and type
analysis. The Spoofax pipeline derives artifacts from a language
specification, such as a parse table for parsing, and a constraint
generator and solver for solving name and type analysis. Further-
more, Spoofax supports interactive language development in an
IDE setting, enabling a language developer to modify a language
specification, resulting in immediate feedback in example programs
of that language, and also supports developing multiple languages
side-by-side. The Spoofax-PIE reimplementation supports these
features. The build script is open-source and can be found online 3.

As input, the Spoofax build script takes a workspace directory
consisting of language specifications, where each language specifi-
cation has a configuration file describing how to build the language
specification, a specification of the syntax, styling, and name and
type analysis in meta-languages, and example programs. A configu-
ration file at the root of the workspace lists the locations of all lan-
guage specifications, and locations of the Spoofax meta-languages.
As a concrete workspace, we use a directory with three Spoofax
language specifications for the Tiger, Calc, and MiniJava languages.

Describing the Spoofax build script is outside of the scope of this
paper. However, we do argue why Spoofax requires a programmatic
build script with dynamic dependencies. The Spoofax build script
frequently makes use of conditional building, where the result
of executing a task influences a condition for another task. For
example, when a program fails to parse, the program cannot be
analyzed, since analysis requires an AST. Therefore, a condition
that checks whether the parsing task succeeds guards the analysis
task. Furthermore, Spoofax also makes frequent use of iterative
building, where tasks are invoked multiples on different inputs
which are outputs of previous tasks. For example, there is a single
task description for parsing a file, which is dispatched based on
the result of parsing the workspace configuration file, parsing the
language specification configuration files, the concrete files that
are in the workspace, and the extension of each file. Without a

2https://github.com/metaborg/pie
3https://github.com/metaborg/spoofax-pie

82

https://github.com/metaborg/pie
https://github.com/metaborg/spoofax-pie

ASE ’18, September 3–7, 2018, Montpellier, France Gabriël Konat, Sebastian Erdweg, and Eelco Visser

programmatic build script, all these forms of variability would have
to be encoded in the configuration step of a declarative build script,
which is not possible because many values only become evident
during build script execution.

Changes. To measure incremental performance, we have synthe-
sized a chain of 60 realistic changes with varying impacts. First, a
from-scratch build is performed that builds all language specifica-
tions. Then, we make changes in the form of opening or changing
a text editor, requiring execution of a task that provides feedback
for that editor, or of modifying and saving a file, which requires
execution of tasks that keep the workspace up-to-date.

Changes include: editing and saving example programs, styling
specifications, syntax specifications, and name and type analy-
sis specifications; adding a new language specification; undoing
changes; and two extreme cases where we run the build with no or
all files changed. These changes have varying impacts, where the
impact is determined by how many tasks are affected by a change,
and the run time of those tasks. For example, changing a syntax defi-
nition file requires recompilation of the parse table and reparsing of
all example programs. Changing the name and types specification
has a larger impact because it requires regeneration of a constraint
generator, compilation of the constraint generator, application of
the generator against all example programs, and finally application
of the constraint solver to solve all generated constraints. A small
impact change is editing an example program in an editor, which
just requires parsing, styling, and analysis for that program.

We run the exact same changes against the Pluto and our hybrid
algorithm, with the only difference that we pass the changed files to
our hybrid algorithm, whereas Pluto does not require this. We run
the chain of changes against one algorithm in one go, to simulate a
full editing session.

Technicalities. We run the benchmark using the JMH [1] bench-
marking framework, which runs the benchmark for an algorithm
in a separate forked JVM, letting the JVM JIT fully specialize to
that algorithm. Furthermore, it runs the benchmark multiple times
before starting measurements, to ensure that the JVM is warmed
up. Finally, it ensures that the garbage collector is executed before
running a benchmark, so that garbage produced in a previous run
does not influence the new one.

We have executed the benchmark on a MacBook Pro with a 2.7
GHz Intel Core i7 processor, 16 GB of 1600 MHz DDR3 memory,
and a SSD, running macOS 10.12.6. The benchmark was executed
with a 64-bit JRE of version 1.8.0b144, with 16 MB of stack memory,
and 4 GB of heap memory.

6.2 Results and Interpretation
We now show the benchmarking results and interpret them. It is not
possible to discuss time measurements for all 60 changes. Therefore
we aggregate the time taken for different kinds of changes and
show those instead. Figure 6 shows the time measurements for
each aggregated change, for both the Pluto and hybrid algorithm,
in a column chart with logarithmic scale.We now go over the results
for each kind of change.

A) Initial build. First, we perform an initial build, building all
language specifications. To obtain the initial dependency graph,

we use top-down building. Therefore, both the Pluto and hybrid
algorithm perform identically.

B) Editor changes. We aggregate the running time for all editor
changes: both opening new editors and editor text changes, for ex-
ample programs and language specifications. For all editor changes
combined, the hybrid algorithm is 11 seconds faster, providing a
speedup of 1016%. The speedup is high because these changes have
a small impact, and therefore are efficiently handled by the hybrid
algorithm. It is important to quickly process editor changes in IDEs,
as programmers make many changes to editors and require fast
feedback cycles.

C) Example program file changes. We modify the files of several
example program, and add a new example program file. For these
changes combined, the hybrid algorithm takes 0.005 seconds, pro-
viding a 9 second (182133%) speedup. Again, these changes have a
small impact, and are therefore efficiently handled by the hybrid
algorithm, whereas the Pluto algorithm still requires checking of
the entire dependency graph.

D) Styling specification change. We modify the styling specifi-
cation of the Calc language, and add a styling specification to the
Tiger language. For these changes, the hybrid algorithm is 8 seconds
faster, providing a 1245% speedup. The impact of these changes
are slightly larger: changes to the styling specification require re-
styling of open editors, but are still relatively smaller in impact and
thus efficiently handled.

E) Adding language specification. We add the MiniJava language
to the workspace, requiring it to be built, and its example programs
to be processed. Since this change causes many new tasks to be
executed, its impact is large. The hybrid algorithm performs roughly
the same as the Pluto algorithm, providing only a 2.9 second (11%)
speedup because of reduced dependency graph checking.

F) Syntax specification small change. We modify lexical syntax
definition of the Calc language to parse numbers incorrectly, and
undo the change afterwards. This requires the parse table to be
rebuilt, and requires processing of Calc’s example programs. The
hybrid algorithm provides a 4.5 second (118%) speedup, because a
smaller part of the dependency graph is checked.

G) Syntax specification cascading change. We modify the Calc
syntax definition in such a way that the resulting parser will fail
to parse all example programs, and also in such a way that new
AST signatures need to be generated. From the syntax specification,
Spoofax generates AST signature files that the name and type anal-
ysis uses. These signature files have changed, therefore requiring
the name and type analysis specification to be recompiled. Finally,
all example programs must be reparsed and reanalyzed.

However, because example programs cannot be parsed any more,
they also cannot be analyzed any more, since name and type analy-
sis requires an AST. Therefore, the dependency from the process
example file task, to the task that analyzes the AST of an example
program, disappears. The Pluto algorithm first visits the process
example file task, which removes its dependency to the analysis
task, and therefore never recompiles the name and type analysis
specification. However, the hybrid algorithm goes bottom-up to
first recompile the name and type analysis specification, and only
then executes the process example file task, therefore executing a

83

Scalable Incremental Building with Dynamic Task Dependencies ASE ’18, September 3–7, 2018, Montpellier, France
ag

gr
eg

at
e

ru
nt

im
e

in
 s

ec
on

ds

1s

10s

100s

A B C D E F G H I J K L

70.1

0.0

49.1

18.8

3.0

21.5

3.9

27.5

0.70.0

1.1

68.7 69.8

3.3

50.9

28.6

17.6

8.48.5

30.4

8.89.1
12.1

68.1 pluto hybrid

0.005 0.7 0.00001

Figure 6: Column chart with aggregate benchmark time measurements. The x-axis represent the different changes (described
below), the y-axis represents the time taken in seconds in logarithmic scale. For each change, we show the time taken for
the Pluto algorithm and our hybrid algorithm. A = initial build, B = all editor changes, C = example program changes, D =
styling specification changes, E = adding language specification, F = syntax specification small change, G = syntax specification
cascading change, H = syntax specification refactor, I = analysis specification changes, J = analysis specification refactor, K =
no changes, L = all files changed.

task that was not required to be executed. In this case, the hybrid
algorithm was 13 seconds slower, causing a 61% slowdown.

This is a tradeoff of the hybrid algorithm: if a dependency to a
task disappears, the hybrid algorithm will still visit it. However,
these cases are very rare, only a single change triggers this kind of
behavior. For example, if at least one example program could be
parsed into an AST (possibly through error recovery), the analysis
specification has to be recompiled. We undo the change afterwards
to make example programs parse again.

H) Syntax specification refactor. We refactor a part of the Mini-
Java syntax definition into another file, which results in a semanti-
cally equivalent parser. The hybrid algorithm provides a 14.5 second
(483%) speedup, because it first rebuilds the parse table, detects that
it did not change, and then cuts off the build early. Contrary to the
previous change, a bottom-up traversal here helps in cutting down
the incremental build time, by not even traversing the unaffected
part of the dependency graph.

I) Analysis specification change. We modify the name and type
analysis specification of the Calc language, such that it scopes bind-
ings differently, and undo the change afterwards. Because changing
these specifications has a moderate impact, the hybrid algorithm
provides a moderate 9.7 second speedup (52%).

J) Analysis specification refactor. We refactor a part of the Tiger
name and type analysis specification into another file. Even though
this results in a semantically equivalent analyzer, the change detec-
tion of the Spoofax-PIE build script is not smart enough to detect
this. Because compiling the name and type analysis specification,
and then performing constraint solving for all Tiger example pro-
grams, is expensive, this change has a large impact. Therefore, the
Pluto and hybrid algorithm perform nearly identically.

K) No changes. When there are no changes, the hybrid algorithm
essentially performs no work, completing in sub-millisecond time,
while the Pluto algorithm still needs to check the entire dependency
graph, costing 3.3 seconds of time. This is the constant overhead that
even small-impact changes suffer from with the Pluto algorithm,
which the hybrid algorithm saves.

L) All files changed. Finally, we change all source files by append-
ing a space to the end of each file. Realistically, this kind of change
can happen when checking out a different branch in a source con-
trol management system such as Git. When all source files change,
using a bottom-up approach makes no sense, since (almost all) tasks
will be affected, while incurring overhead because of scheduling.
Therefore, we detect when more than 50% of source files (all re-
quired files, for which there is no generator task) change, and run a
top-down build with the Pluto algorithm instead, therefore running
as fast as the Pluto algorithm does. This heuristic seems to work
well, but may require further tweaking.

Conclusion. We can conclude that, for this build script and work-
space directory, our algorithm scales better with the impact of a
change than the Pluto algorithm, for many kinds of changes. The
only exceptions being when all files are changed, for which a full
rebuild could be triggered, or when a dependency to an expensive
task is removed, which rarely happens.

6.3 Threats to Validity
A possible threat to validity is that we have benchmarked the algo-
rithms against a single build script. However, it is a complex build
script that represents the realistic scenario of interactive language
development in a language workbench. For example, the build script

84

ASE ’18, September 3–7, 2018, Montpellier, France Gabriël Konat, Sebastian Erdweg, and Eelco Visser

requires dynamic file dependencies in order to track precise depen-
dencies which only become evident during a build. Furthermore, it
also requires dynamic task dependencies, in order to dispatch the
correct tasks based on the configuration of the workspace and each
language specification.

Another possible threat is that we have synthesized a chain of
changes, instead of using existing change scenarios. However, we
have constructed 60 changes to different kinds of aspects; such
as changing an example program, and changing a file of the syn-
tax specification; and with varying levels of impact, ranging from
changing the text in a single editor, to changing a file of the name
and type specification, which transitively affects many other tasks.

7 RELATEDWORK
There is a large body ofwork on incremental build systems.Make [25]
is an incremental build system with declarative build rules based
on files. It has limited support for dynamic file dependencies, and
no proper support for dynamic task dependencies. Because of these
limitations, Make scales well for simple build scripts, since it can
first topologically sort dependencies, iterate over the dependencies,
and incrementally execute affected tasks. While it is possible to
emulate dynamic task dependencies, this requires tedious Makefile
generation, encoding of all dependencies as files, and recursive
Make execution. Therefore, Make is not sufficient for more compli-
cated build scripts.

Many build systems follow a similar approach to Make, first
building a task DAG, and then executing it. For example, Gra-
dle [12], Bazel [6], Buck [5], PROM [14], Fabricate [11], Tup [24],
and Ninja [18] follow this approach, with slight variations. Gradle
is a build automation tool, programmable in the Groovy language,
that, like our hybrid algorithm, also supports values as inputs and
outputs of tasks. PROM replaces declarative make rules with logical
programming, while keeping the same incremental build algorithm.
Fabricate uses system tracing to automatically infer file dependen-
cies, but is only supported on Linux. Tup, like our hybrid build
algorithm, requires a list of changed files as input, instead of scan-
ning all files, to more efficiently build the task DAG. Ninja, unlike
Make, detects changes to the commands of a rule, resulting in a
rebuild if the rule is changed. None of the above systems supports
dynamic file or task dependencies.

Some build systems intertwine incremental execution with the
discovery of file and task dependencies. Pluto [3] is a Java library
for developing incremental build scripts with dynamic dependen-
cies. As discussed throughout this paper, Pluto uses a top-down
algorithm that does not scale to small changes over large depen-
dency graphs. OMake [10] is a build system with Make-like syntax,
but with a richer dependency tracking mechanism and a more
complicated algorithm. It has limited support for dynamic file de-
pendencies through scanner rules that scan depfiles and register
their dependencies during execution. However, it does not support
dynamic task dependencies; all tasks dependencies are specified
statically in the build rules. Shake [21, 22] is a Haskell library for
implementing build scripts with incremental execution. It has lim-
ited support for dynamic file dependencies, allowing needed files
to be discovered dynamically, but generated file dependencies must
be specified statically as the build target. It also has limited support

for dynamic task dependencies: Tasks are named by keys, and those
tasks can be required like files through their keys. However, these
tasks are not parameterized, nor can they return values, making
their use as dynamic task dependencies tedious.

Our work is also related to approaches on incremental comput-
ing. Datalog [2] is a logic programming language with incremental
solvers [7]. The are several differences between our hybrid algo-
rithm and incremental Datalog solvers. Datalog solvers can deal
with cycles, eagerly compute all facts, and use static dependencies
from the Datalog program, whereas the hybrid algorithm (and build
systems in general) disallow cycles, only compute demanded facts,
and use dynamic dependencies.

Adapton [8, 9] is a library for on-demand (lazy) incremental
computation. Like the Pluto and our hybrid algorithm, Adapton
supports a form of dynamic task dependencies: dynamic compu-
tation dependencies which form a computation graph. Initially,
Adapton builds a full computation graph. Then, to achieve incre-
mentality, when a node in the computation graph is affected by
a change, it transitively marks all dependent nodes by setting a
dirty flag. Then, when a computation result is demanded, it transi-
tively reruns all dirty nodes that are required by the computation.
The downside of dirty flagging is that it is an over-approximation
of what actually needs to be executed, ignoring cases where the
output of a computation does not change. In build systems, where
many tasks may depend on a single compiler task, and where com-
putations include calling compilers that can run for seconds to
even minutes, avoiding recomputation when dependencies do not
change, is crucial. For example, when we change a syntax specifi-
cation, but the resulting parse table does not change, dirty flagging
has already marked parsing all example files as dirty. Therefore,
our hybrid algorithm checks outputs of task to cut off the build
early, instead of performing dirty flagging and propagation.

8 CONCLUSION
We have shown the need for an efficient, precise, and expressive
build system. Many build systems are efficient and precise, but not
expressive, making complex build script development tedious. Pluto,
a recent incremental build system that supports programmable
build scripts with dynamic dependencies, is expressive, but does
not scale with the impact of a change, because it requires a top-
down traversal over the entire dependency graph for each change.
To overcome this scalability problem, we have realized a hybrid
algorithm that mixes bottom-up building for scalability, and top-
down building for expressiveness through dynamic dependencies.
We have evaluated the performance of our hybrid algorithm against
Pluto’s algorithm, with a case study on the Spoofax language work-
bench. The evaluation demonstrates that the hybrid algorithm, with
the exception of one kind of change, indeed scales better with the
impact of a change, and is therefore faster than the Pluto algorithm,
in particular for low-impact changes.

ACKNOWLEDGEMENTS
This research was supported by NWO/EW Free Competition Project
612.001.114 (Deep Integration of Domain-Specific Languages) and
NWO VICI Project (639.023.206) (Language Designer’s Workbench).

85

Scalable Incremental Building with Dynamic Task Dependencies ASE ’18, September 3–7, 2018, Montpellier, France

REFERENCES
[1] [n. d.]. JavaMicrobenchmarkingHarness (JMH). http://openjdk.java.net/projects/

code-tools/jmh/. [Online; accessed 27-April-2018].
[2] S. Ceri, G. Gottlob, and L. Tanca. 1989. What You Always Wanted to Know About

Datalog (And Never Dared to Ask). IEEE Trans. on Knowl. and Data Eng. 1, 1
(March 1989), 146–166. https://doi.org/10.1109/69.43410

[3] Sebastian Erdweg, Moritz Lichter, and Manuel Weiel. 2015. A sound and optimal
incremental build system with dynamic dependencies. In Proceedings of the 2015
ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA,
USA, October 25-30, 2015, Jonathan Aldrich and Patrick Eugster (Eds.). ACM,
89–106. https://doi.org/10.1145/2814270.2814316

[4] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Meinte Boersma, Remi
Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex
Loh, Gabriël Konat, Pedro J. Molina, Martin Palatnik, Risto Pohjonen, Eugen
Schindler, Klemens Schindler, Riccardo Solmi, Vlad A. Vergu, Eelco Visser, Kevin
van der Vlist, Guido Wachsmuth, and Jimi van der Woning. 2013. The State of
the Art in Language Workbenches - Conclusions from the Language Workbench
Challenge. In Software Language Engineering - 6th International Conference, SLE
2013, Indianapolis, IN, USA, October 26-28, 2013. Proceedings (Lecture Notes in
Computer Science), Martin Erwig, Richard F. Paige, and Eric Van Wyk (Eds.),
Vol. 8225. Springer, 197–217. https://doi.org/10.1007/978-3-319-02654-1_11

[5] Facebook. [n. d.]. Buck: a fast build tool. https://buckbuild.com/. [Online;
accessed 27-April-2018].

[6] Google. [n. d.]. Bazel - a fast, scalable, multi-language and extensible build system.
https://bazel.build/. [Online; accessed 27-April-2018].

[7] Ashish Gupta and Inderpal Singh Mumick. 1995. Maintenance of Materialized
Views: Problems, Techniques, and Applications. IEEE Data Eng. Bull. 18, 2 (1995),
3–18. http://sites.computer.org/debull/95JUN-CD.pdf

[8] Matthew A. Hammer, Joshua Dunfield, Kyle Headley, Nicholas Labich, Jeffrey S.
Foster, Michael W. Hicks, and David Van Horn. 2015. Incremental computation
with names. In Proceedings of the 2015 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2015, part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015, Jonathan
Aldrich and Patrick Eugster (Eds.). ACM, 748–766. https://doi.org/10.1145/
2814270.2814305

[9] Matthew A. Hammer, Yit Phang Khoo, Michael Hicks, and Jeffrey S. Foster.
2014. Adapton: composable, demand-driven incremental computation. In ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’14, Edinburgh, United Kingdom - June 09 - 11, 2014, Michael F. P. O’Boyle and
Keshav Pingali (Eds.). ACM, 18. https://doi.org/10.1145/2594291.2594324

[10] Jason Hickey and Aleksey Nogin. 2006. OMake: Designing a Scalable Build
Process. In Fundamental Approaches to Software Engineering, Luciano Baresi
and Reiko Heckel (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 63–78.
https://doi.org/10.1007/11693017_7

[11] B. Hoyts and Simon Alford. 2009. fabricate. https://github.com/SimonAlfie/
fabricate. [Online; accessed 27-April-2018].

[12] Gradle Inc. [n. d.]. Gradle Build Tool. https://gradle.org/. [Online; accessed
27-April-2018].

[13] Lennart C. L. Kats and Eelco Visser. 2010. The Spoofax language workbench:
rules for declarative specification of languages and IDEs. In Proceedings of the
25th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2010, William R. Cook, Siobhán Clarke,
and Martin C. Rinard (Eds.). ACM, Reno/Tahoe, Nevada, 444–463. https://doi.
org/10.1145/1869459.1869497

[14] Thilo Kielmann. 1991. PROM: A flexible, PROLOG-based make tool. Technical
Report Report TI-4/91. Institute of Theoretical Computer Science, Darmstadt Uni-
versity of Technology, Darmstadt, Germany. http://www.few.vu.nl/~kielmann/
papers/THD-SP-1991-04.pdf

[15] Gabriël Konat, Lennart C. L. Kats, Guido Wachsmuth, and Eelco Visser. 2012.
Declarative Name Binding and Scope Rules. In Software Language Engineering,
5th International Conference, SLE 2012, Dresden, Germany, September 26-28, 2012,
Revised Selected Papers (Lecture Notes in Computer Science), Krzysztof Czarnecki
and Görel Hedin (Eds.), Vol. 7745. Springer, 311–331. https://doi.org/10.1007/
978-3-642-36089-3_18

[16] Gabriël Konat, Michael J. Steindorfer, Sebastian Erdweg, and Eelco Visser. 2018.
PIE: ADomain-Specific Language for Interactive Software Development Pipelines.
The Art, Science, and Engineering of Programming 2, 3 (2018). https://doi.org/10.
22152/programming-journal.org/2018/2/9

[17] Epperly T Kumfert G. 2002. Software in the DOE: The Hidden Overhead of "The
Build". Technical Report. Lawrence Livermore National Laboratory.

[18] Evan Martin. [n. d.]. The Ninja build system. https://ninja-build.org/manual.html.
[Online; accessed 27-April-2018].

[19] Shane McIntosh, Bram Adams, and Ahmed E. Hassan. 2010. The evolution of
ANT build systems. In Proceedings of the 7th International Working Conference on
Mining Software Repositories, MSR 2010 (Co-located with ICSE), Cape Town, South
Africa, May 2-3, 2010, Proceedings, Jim Whitehead and Thomas Zimmermann
(Eds.). IEEE, 42–51. https://doi.org/10.1109/MSR.2010.5463341

[20] Peter Miller. [n. d.]. Recursive make considered harmful. ([n. d.]).
[21] Neil Mitchell. 2012. Shake before building: replacing make with haskell. In

ACM SIGPLAN International Conference on Functional Programming, ICFP’12,
Copenhagen, Denmark, September 9-15, 2012, Peter Thiemann and Robby Bruce
Findler (Eds.). ACM, 55–66. https://doi.org/10.1145/2364527.2364538

[22] Andrey Mokhov, Neil Mitchell, Simon Peyton Jones, and Simon Marlow. 2016.
Non-recursive make considered harmful: build systems at scale. In Proceedings of
the 9th International Symposium on Haskell, Haskell 2016, Nara, Japan, September
22-23, 2016, Geoffrey Mainland (Ed.). ACM, 170–181. https://doi.org/10.1145/
2976002.2976011

[23] Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido Wachsmuth. 2015.
A Theory of Name Resolution. In Programming Languages and Systems - 24th
European Symposium on Programming, ESOP 2015, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK,
April 11-18, 2015. Proceedings (Lecture Notes in Computer Science), Jan Vitek (Ed.),
Vol. 9032. Springer, 205–231. https://doi.org/10.1007/978-3-662-46669-8_9

[24] Mike Shal. 2009. Build System Rules and Algorithms. http://gittup.org/tup/build_
system_rules_and_algorithms.pdf. [Online; accessed 27-April-2018].

[25] Richard M. Stallman, Roland McGrath, and Paul D. Smith. 2016. GNU Make
manual. Free Software Foundation.

[26] Hendrik van Antwerpen, Pierre Néron, Andrew P. Tolmach, Eelco Visser, and
Guido Wachsmuth. 2016. A constraint language for static semantic analysis
based on scope graphs. In Proceedings of the 2016 ACM SIGPLAN Workshop
on Partial Evaluation and Program Manipulation, PEPM 2016, St. Petersburg, FL,
USA, January 20 - 22, 2016, Martin Erwig and Tiark Rompf (Eds.). ACM, 49–60.
https://doi.org/10.1145/2847538.2847543

[27] Eelco Visser. 1997. Syntax Definition for Language Prototyping. Ph.D. Dissertation.
University of Amsterdam. Advisor(s) Paul Klint.

86

http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
https://doi.org/10.1109/69.43410
https://doi.org/10.1145/2814270.2814316
https://doi.org/10.1007/978-3-319-02654-1_11
https://buckbuild.com/
https://bazel.build/
http://sites.computer.org/debull/95JUN-CD.pdf
https://doi.org/10.1145/2814270.2814305
https://doi.org/10.1145/2814270.2814305
https://doi.org/10.1145/2594291.2594324
https://doi.org/10.1007/11693017_7
https://github.com/SimonAlfie/fabricate
https://github.com/SimonAlfie/fabricate
https://gradle.org/
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/1869459.1869497
http://www.few.vu.nl/~kielmann/papers/THD-SP-1991-04.pdf
http://www.few.vu.nl/~kielmann/papers/THD-SP-1991-04.pdf
https://doi.org/10.1007/978-3-642-36089-3_18
https://doi.org/10.1007/978-3-642-36089-3_18
https://doi.org/10.22152/programming-journal.org/2018/2/9
https://doi.org/10.22152/programming-journal.org/2018/2/9
https://ninja-build.org/manual.html
https://doi.org/10.1109/MSR.2010.5463341
https://doi.org/10.1145/2364527.2364538
https://doi.org/10.1145/2976002.2976011
https://doi.org/10.1145/2976002.2976011
https://doi.org/10.1007/978-3-662-46669-8_9
http://gittup.org/tup/build_system_rules_and_algorithms.pdf
http://gittup.org/tup/build_system_rules_and_algorithms.pdf
https://doi.org/10.1145/2847538.2847543

	Abstract
	1 Introduction
	2 Background and Problem Statement
	3 Key Idea and Challenges
	3.1 Bottom-Up Traversal
	3.2 Top-Down Initialization
	3.3 Early Cut-Off
	3.4 Order of Recomputation
	3.5 Dynamic Dependencies
	3.6 Dependency Graph Validation

	4 Change-Driven Incremental Building
	4.1 Bottom-Up Building
	4.2 Execution, Requirement, and Validation
	4.3 Properties

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Results and Interpretation
	6.3 Threats to Validity

	7 Related Work
	8 Conclusion
	References

