Towards Incremental Compilation for Stratego

Jeff Smits
TU Delft
j.smits-1@tudelft.nl

Abstract

Stratego is a transformation language based on term rewrit-
ing with programmable rewriting strategies. A program
in Stratego consists of named rewrite rules and strategies.
When definitions have the same name, they contribute to
the same rule. This works across files, thereby allowing ex-
tensibility.

Due to this distribution of rules over modules, the Stratego
compiler has always been a whole program compiler. Large
Stratego programs are slow to compile as a result. In this
work we present our approach to incremental compilation of
Stratego. The approach may be useful for incremental com-
pilation of other languages with similar cross-file features.

Keywords separate compilation, linking, Stratego

ACM Reference Format:

Jeff Smits and Eelco Visser. 2018. Towards Incremental Compilation
for Stratego. In Proceedings of 2018 ACM SIGPLAN conference on
Systems, Programming, Languages and Applications: Software for
Humanity - Poster session (SPLASH Posters’18). ACM, New York, NY,
USA, 2 pages.

1 Introduction

Stratego [2, 3] is a tree transformation language with rewrite
rules and strategies. It defines such rules and strategies by
name. Multiple definitions with the same name are merged
as different options of the rule or strategy. This works over
different files, which is used an extensibility mechanism.

This extensibility mechanism can, for example, be used
to desugar language features to a core language. The core
language can be defined in one module with an identity
desugaring, and different extensions of the language and
the corresponding desugaring can be written in their own
module.

To support this extensibility mechanism, the compiler
compiles the whole program at once. For larger programs
this is a slow process. Therefore we want to introduce incre-
mental compilation for Stratego. This does, however, require
some work as a number of cross-module features of Stratego
need to be taken into account.

We present three different compilation models, the whole
program one, and two incremental ones. We have found
solutions to issues that are likely not unique to Stratego
and may be reused for incremental compilation of other
languages.

SPLASH Posters’18, November 4-9, 2018, Boston, MA, USA
2018.

Eelco Visser
TU Delft
e.visser@tudelft.nl

[mer D

J/m.str
strategy
definitions:
s1
s1

s2
compiler
Jk.str

strategy

D
Main.java

D

InteropRegistrer.java
TN

s1_0_0.java
N

s2_0_0.java
D

s3_0_0.java

definitions:
s2

s3 ——@ reads file
—» writes file
contributes to

Figure 1. Whole-program compilation model. All modules
are merged by a single process.

2 Compilation Models

The three different compilation models we present are: the
slow whole-program compilation model, a dynamic linking
compilation model, and a static linking compilation model.

Whole Program Whole program compilation takes in all
relevant files with Stratego modules. It parses all and builds
a single internal model of the program. This is then used to
generate a Java class for each strategy, and to generate two
shared classes. We illustrate this in Figure 1 for two modules.
The InteropRegistrer class has a list of all strategy names
to register to their implementations at run-time. The Main
class is an entry-point for the program if the Stratego code is
used stand-alone, and has some constants and other objects
pre-allocated in static fields, which are then used in the other
Java classes for the strategies. Strategies s1 and s3 are only
defined in one module and each have their corresponding
Java class in the compiler output. Strategy s2 is defined in
both modules, and merged by the compiler into a single Java
class.

Dynamic Linking With a dynamic linking approach we
run the compiler once for each module. This means that if
multiple modules define the same strategy, we now have
duplicate classes. These classes need to be merged (linked)
at run-time. The Stratego runtime and the generated code
need to be adapted so this dynamic linking can happen. This
is illustrated in Figure 2. This model was first used in a case
study of the Stratego compiler for the Pluto incremental
build system [1].

The downsides of this approach are twofold: First, linking
at run-time has an overhead during execution. Second, the
Stratego runtime and generated code need to be adapted to
support dynamic linking. This means they become incompat-
ible with compiled Stratego code from earlier versions. That

SPLASH Posters’18, November 4-9, 2018, Boston, MA, USA

[e D

Jm.str
strategy

AN
InteropRegistrer.java
definitions:

s1 @—— compiler s1_0_0.java
st N s

l

runtime

D
InteropRegistrer.java -

s2_0_0.java
—=e reads file

N —> generates
s3_0_0.java

Jk.str
strategy
definitions: |@—— compiler
s2
s3

---» contributes to
Figure 2. Dynamic linking model. Compiler run for each
module, runtime merges strategies.

[s DN

/m.str
strategy
definitions:

s1 Jk.aterm

./m.aterm Main.java
back-end

N
InteropRegistrer.java

[
lj

!
oL

S; f@—— front-end
B

J/s1/m.aterm

N back-end
N

. ‘

back-end s2_0_0.java
Jk.str |@—— front-end [N)
strategy /s2/k.aterm

definitions:

s2 AN back-end
s3 /s3/k.aterm

N
s1_0_0.java

s3_0_0.java

—e reads file
— writes file
requires task

Figure 3. Static linking model. Frontend task for each mod-
ule, backend task for each strategy.

incompatibility was the main reason we could not adopt this
approach: We have some compiled Stratego code without
the source code, therefore the runtime needs to be backward
compatible.

Static Linking To achieve incremental compilation with
static linking, we split up the compiler into a front-end and
a back-end'. See Figure 3 for another illustration. The front-
end can be called separately on each module. It generates a
file for each strategy, named so that multiple front-end tasks
generate files for the same strategy in the same directory.
Now we have a directory of files for each strategy, which
is taken as input to the back-end. The back-end merges all
contributions to a strategy and generates one java class.

Note that we also expected aMain and InteropRegistrer
class. These are generated separately based on extra infor-
mation extracted from each module. For simplicity, we re-
moved the caching of objects in static fields of Main, but
the InteropRegistrer is unchanged. The list of strategies
used in the InteropRegistrer is provided through the extra
information file.

In this model, a change to a single strategy definition in a
single module will result in some checks by the incremen-
tal system and the execution of one front-end task for the
module and one back-end task for the changed strategy.

Reusable pattern We believe that there is a pattern, where
one extracts extra information per module and merges it with

I This was already the architecture of the compiler.

Jeff Smits and Eelco Visser

another task. For example, we may use this pattern to extract
overlays, a feature in Stratego for aliases of terms. These can
be extracted for all modules, combined, and then given as an
input to all other back-end tasks.

3 Future Work

In this section we briefly discuss work we still mean to do.

Performance Evaluation Since we have not yet conducted
a performance evaluation, we cannot claim to have solved
the slow compilation of Stratego code in Spoofax projects.

Deletion We need to handle deletion on multiple levels.
Currently we only handle the deletion of a strategy, which
requires the deletion of the corresponding intermediate file
for that strategy. This is done by the front-end task. First all
generated files that match the module name are removed.
This can be done without needing to remember which ones
were output the last time since the output file names follow
a predictable, disjoint pattern. Then the front-end generates
each file anew as necessary.

File level deletion is a similar problem to deleting a strat-
egy, but now a front-end task doesn’t get reached. This
should be a trigger to still run the old task, with a special
signal of deletion, to allow the task to clean up generated
files.

One could argue that deleting intermediate files is the re-
sponsibility of the incremental build system too. This is likely
to be expensive, as the system would have to track interme-
diate file. But in the case of Pluto, this is already tracked as
a dynamic sanity check that no hidden dependencies exist.

Automatic Task Dependencies Each back-end task de-
pends on exactly those front-end tasks that generated the
input files for it. These dependencies seem derivable, but this
is not simple with dynamically discovered dependencies.

Acknowledgements

We would like to thank Gabriél Konat for explaining many
things around incremental build systems.

References

[1] Sebastian Erdweg, Moritz Lichter, and Manuel Weiel. 2015. A sound
and optimal incremental build system with dynamic dependencies.
In Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October 25-
30, 2015, Jonathan Aldrich and Patrick Eugster (Eds.). ACM, 89-106.
https://doi.org/10.1145/2814270.2814316

[2] Eelco Visser. 2005. Transformations for Abstractions. In 5th IEEE Inter-
national Workshop on Source Code Analysis and Manipulation (SCAM
2005), 30 September - 1 October 2005, Budapest, Hungary. IEEE Computer
Society. https://doi.org/10.1109/SCAM.2005.26

[3] Eelco Visser and Zine-El-Abidine Benaissa. 1998. A core language for
rewriting. Electronic Notes in Theoretical Computer Science 15 (1998),
422-441. https://doi.org/10.1016/S1571-0661(05)80027- 1

https://doi.org/10.1145/2814270.2814316
https://doi.org/10.1109/SCAM.2005.26
https://doi.org/10.1016/S1571-0661(05)80027-1

	Abstract
	1 Introduction
	2 Compilation Models
	3 Future Work
	References

