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ABSTRACT
DynSem is a domain-specific language for concise specification of
the dynamic semantics of programming languages, aimed at rapid
experimentation and evolution of language designs. DynSem spec-
ifications can be executed to interpret programs in the language
under development. To enable fast turnaround during language
development, we have developed a meta-interpreter for DynSem
specifications, which requires minimal processing of the specifica-
tion. In addition to fast development time, we also aim to achieve
fast run times for interpreted programs.

In this paper we present the design of a meta-interpreter for
DynSem and report on experiments with JIT compiling the applica-
tion of the meta-interpreter on the Graal VM. By interpreting spec-
ifications directly, we have minimal compilation overhead. By spe-
cializing pattern matches, maintaining call-site dispatch chains and
using native control-flow constructs we gain significant run-time
performance. We evaluate the performance of the meta-interpreter
when applied to the Tiger language specification running a set of
common benchmark programs. Specialization enables the Graal
VM to JIT compile the meta-interpreter giving speedups of up to
factor 15 over running on the standard Oracle Java VM.
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• Software and its engineering → Interpreters; Domain spe-
cific languages; Semantics;
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1 INTRODUCTION
The dynamic semantics of a programming language defines the
run time execution behavior of programs in the language. Ideally,
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the design of a programming language starts with the specifica-
tion of its dynamic semantics to provide a high-level readable and
unambiguous definition. However, understanding the design of a
programming language also requires experimentation by actually
running programs. Therefore, this ideal route is rarely taken, but
language designs are embodied in the implementation of inter-
preters or compilers instead.

We have previously designed DynSem [33], a high-level meta-
DSL for dynamic semantics specifications of programming lan-
guages, with the aim of supporting readable and executable specifi-
cation. It supports the definition of modular and concise semantics
by means of reduction rules with implicit propagation of contextual
information. DynSem’s executable semantics entails that specifica-
tions can be used to interpret object language programs.

In our early prototypes, DynSem specifications were compiled
to an interpreter. The process of generating a Java implementa-
tion of an interpreter and compiling that generated code caused
long turnaround times during language prototyping. In order to
support rapid prototyping with short turnaround times, we turned
to interpreting specifications directly instead of compiling them.
A DynSem interpreter is a meta-interpreter since the programs it
interprets are themselves interpreters. Figure 1 depicts the high-
level architecture of the DynSem meta-interpreter. First, a DynSem
specification is desugared (explicated) tomake implicit passing of se-
mantic components explicit. The resulting specification in DynSem
Core is then loaded into the meta-interpreter together with the
AST of the interpreted object program. The interpreter consumes
the program as input enacting the specification. This produces the
desired result of a short turnaround time for experimenting with
dynamic semantics specifications.

Meta-interpretation reduces the turnaround time at the expense
of execution performance. At run time there are two interpreter
layers operating (the meta-language interpreter and the object-
language interpreter) which introduces substantial overhead. While
we envision DynSem as a convenient way to prototype the dynamic
semantics of programming languages, ultimately we also envision
it as a convenient way to bridge the gap between the prototyp-
ing and production phases of a programming language’s lifecycle.
Thus, we not only want an interpreter fast, but we also want a
fast interpreter, which raises the question: Can we achieve fast
object-language interpreters by optimizing the meta-interpretation
of dynamic semantics specifications?

Direct vanilla interpreters are in general slow to begin with,
even when they are implemented in a host language that is JIT-
ed. This is because the host JIT is unable to see patterns in the
object language and to meaningfully optimize the interpreter. The
task of optimizing an interpreter has traditionally been long and
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Figure 1: Meta-interpretation overview

difficult and required specialized knowledge. Recent advances in
JIT technology, such as meta-tracing [7] and meta-compilation [36]
strive to make it tractable for non-JIT-experts to define interpreters
that are as fast as native code. JIT-ing a meta-interpreter requires
dynamic compilation of the two interpreter layers concomitantly,
complicating the problem.

In this paper, we present the design of a meta-interpreter for
DynSem specifications and report on experimentswith JIT-compiling
the application of the meta-interpreter on the Graal Virtual Ma-
chine [36]. We begin with a pure meta-interpreter (Section 3) and
evolve it to a hybrid interpretation approach (Section 4) which
combines generated components with interpreted specifications.
We tackle the problem of non-linear control-flow in the specifica-
tion by designing a dispatch mechanism (Section 5) that allows the
JIT to restructure the specification by inlining it so that the only
remaining dispatch is that of the interpreted program. We then
open the door to a hybrid between meta-circular and definitional
interpreters without sacrificing the clarity of the specification. This
allows us to distinguish looping control-flow at the meta-level from
loops at the program level (Section 6). Concretely, the contributions
of this paper are:

• A hybrid meta-interpretation technique which combines
generational and interpreted components leading to obtain
increased performance without sacrificing turnaround time
during language prototyping.

• The design of a dispatch mechanism that combines dispatch
caching and dispatch reorganization to allow control-flow
to stabilize even in the face of local backtracking.

• The combination of definitional interpreterswithmeta-circular
components for looping control-flow tomaximize the amount
of inlining that the JIT can provide.

We evaluate our meta-interpreters (Section 7) by applying them to a
specification of the Tiger [3] programming language. When run on
the Graal VM the meta-interpreter shows improved performance
by factor 6 to 15, depending on the workload.

2 BACKGROUND
Our aim is to design a meta-interpreter for DynSem [33] speci-
fications of dynamic semantics so that they can be just-in-time
compiled on the Oracle Graal VM.

We briefly introduce DynSem and the specification of our case
study language Tiger. We then give an overview of developing
interpreters using Truffle and Graal.

2.1 Semantics Specifications with DynSem
The dynamic semantics of a programming language defines the
run-time behavior of its constructs. DynSem is a meta-DSL for
specifying the dynamic semantics of programming languages, in-
cluded in the Spoofax Language Workbench [18]. DynSem is part
of the effort to create programming environments from high-level
specifications [34]. Specifications are given in terms of syntax-
oriented rules over named arrows from program terms to values, in
a big-step style [17]. Rules can access contextual evaluation infor-
mation from read-only components (mentioned left of the ⊢ symbol)
and from read-write components. Read-only components propa-
gate downwards (environment semantics), read-write components
thread through the rules (store semantics).

We use DynSem to specify the dynamic semantics of the Tiger [3]
programming language. Tiger is a statically typed programming
language with let bindings, functions, records and control-flow
constructs. It was introduced by Andrew Appel in his book Modern
Compiler Implementation [3]. We use Tiger as the running case
study for the remainder of this paper. The specification consists of
signature declarations and reduction rules.

Signatures. Figure 2a shows a fragment of Tiger signatures. It
declares two sorts of terms: Exp for program expressions, and V

to be used for value terms. A constructor term named Plus has
two children, both expressions. Itself the Plus constructor has type
Plus/2, where 2 is its arity, and is of sort Exp. Figure 2a also de-
clares an arrow named “” (the empty string) that reduces expression
terms (of sort Exp) to value terms (of sort V ). DynSem specifica-
tions are statically checked with respect to declared signatures and
construction or matching of morphologically incorrect terms are
rejected.

Rules. Rules relate program terms to value terms. A rule has
a conclusion and arbitrarily many premises; they should be read
like standard derivation rules with the exception that premises
are ordered. The rule of Figure 2b gives the semantics of arith-
metic addition in Tiger. The conclusion consists of three parts: the
input pattern match, the arrow, and the construction of the out-
put term. The input pattern Plus(e1, e2) serves two purposes.
Firstly, it ensures that the input term is of type Plus/2 and it binds
meta-variables e1 and e2 to its two sub-expressions. Secondly, the
input pattern together with the arrow, declare that the rule reduces
terms of type Plus/2 and that it populates the arrow declaration
Exp −→ V.

Each of the two premises evaluates a sub-expression over rules
of the Exp −→ V arrow and enforces the requirement that the result
of evaluation is a term of type IntV /1, binding the sub-term to a
meta-variable. The enforcement is by means of applying the pattern
matches IntV(i) and IntV(j) to the result of evaluating e1 and
e2, respectively. The rule constructs and emits (returns) a term of
type IntV /1. The term addI(i, j) is an invocation of primitive
operator addI which performs the arithmetic addition. The rule
propagates the semantic components E and H to the evaluation of
the sub-expressions. Semantic component E (representing a variable
environment) is passed as a read-only semantic component, while
H (representing a store) is threaded through the computation and
returned from the rule.
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The order of evaluation in a rule is as follows: first the input
pattern match is applied, then premises are evaluated in the order
of declaration, finally the output term is constructed and returned.

Rules can be overloaded. If Tiger, for example, overloaded the +
operator to also allow string concatenation, then the specification
could contain a second rule for the type Plus/2 overloading the
arithmetic addition one.

A rule only has to explicitly mention those semantic components
which it modifies, other components can be left implicit. Since the
rule of Figure 2b does not modify either semantic component it may
leave both implicit and it can be written as in Figure 2c. A static
analysis infers what semantic components must be propagated and
informs a source-to-source transformation that explicates the rule
of Figure 2c into that of Figure 2b.

The arithmetic addition rule can be written more concisely by
making the reductions of e1 and e2 implicit, as the rule of Fig-
ure 2d does. A static analysis determines that sub-terms of sort
Exp can only conform to the type IntV /1 by reduction from Exp to
V over arrow Exp −→ V. The analysis informs a source-to-source
transformation that lifts the implicit reductions to explicit premises.

Meta-Functions. DynSem allows standalone units of semantics to
be separately defined as meta-functions. This supports reuse across
rules and promotes concise rules. The semantics of a Tiger function
call of Figure 2e is a good example of meta-function use in DynSem.
Meta-function readVar implements semantics for environment and
store access; the rule for function calls uses it to retrieve the closure
to be applied. DynSem does not (yet) have higher-order rules, so the
meta-function evalArgs implements a zip- and fold-like transfor-
mation that evaluates arguments and bind them in an environment.
The meta-functions lookup, read, write and allocate of Figure 2e
are reusable semantic units for environment and store operations.

2.2 Truffle Interpreters on the Graal VM
We briefly and informally discuss the structure of Truffle-based
interpreters and how they can be optimized when they are run on
a Graal VM. For a definitive guide we refer the reader to the Truffle
and Graal literature [15, 35–37].

Truffle interpreters are AST interpreters implemented in Java.
An AST interpreter organizes interpretation logic (semantics of
the language) in tree-like data structures whose nodes correspond
to syntactic constructs of the interpreted language. Execution in
an AST interpreter flows downwards in the tree and results flow
upwards. A language with a binary arithmetic addition, for exam-
ple, will have an interpreter node called Plus with two executable
children and execute method. The execute method invokes eval-
uation of the two children, performs the addition and returns the
result. Each execute method is parameterized with a frame which
is propagated downwards with the evaluation. The frame is used
to store bindings for local variables of the program.

To avoid tree traversals when resolving function calls, the AST
of the program is broken down into smaller trees that usually cor-
respond to function definitions in the interpreted program. Each
tree has a root node which has no parent. Each root node defines
a call target. A call target is an evaluation entry point which does
not receive a frame but instead creates a frame when it is invoked

signature
sorts Exp V
constructors
Plus: Exp * Exp→ Exp
Call: Id * List(Exp)→ Exp
IntV: Int→ V

arrows
Exp −→ V

(a)

E ⊢ e1 :: H1 −→ IntV(i) :: H2;
E ⊢ e2 :: H2 −→ IntV(j) :: H3
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

E ⊢ Plus(e1, e2) :: H1 −→ IntV(addI(i, j)) :: H3

(b)

e1 −→ IntV(i);
e2 −→ IntV(j)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Plus(e1, e2) −→ IntV(addI(i, j))

(c)

Plus(IntV(i), IntV(j)) −→ IntV(addI(i, j))

(d)

readVar(f) −→ ClosureV(params, e, E);
evalArgs(params, args) −→ E';
E {E', E} ⊢ e −→ v
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Call(f, args) −→ v

evalArgs([],[]) −→ {}

allocate(v) −→ a; evalArgs(args, es) −→ E
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

evalArgs([FArg(x : Id, _)|args], [v|es]) −→ {x 7→ a,E}

readVar(x) −→ read(lookup(x))

E ⊢ lookup(x) −→ E[x]

read(a) :: H −→ H[a]

write(a, v) :: H −→ v :: H {a 7→ v,H}

fresh⇒ a; write(a, v) −→ _
−−−−−−−−−−−−−−−−−−−−−−−−−−−

allocate(v) −→ a

(e)

Figure 2: (a) Signature declaration for Tiger program and
value terms (fragment). Reduction rules for arithmetic ad-
dition in Tiger in three flavors: (b) fully explicit (c) implicit
semantic components (d) implicit semantic components and
reductions. (e) Reduction rule for the function call in Tiger,
and meta-functions for variable lookup and store access.

and passes it to its root node. A function call in a program consists
of looking up and invoking the intended call target.

The Truffle and Graal method consists of rewriting the inter-
preter AST at run time so that its nodes are specialized to handling
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the types of runtime values that they observe, giving up generic
functionality. For example, a binary addition/concatenation node
which has only observed numeric operands and never strings can
be replaced by a node dedicated to numeric addition. This dedicated
node is guarded by a check that the operands are numbers. If the
check fails the node is replaced by a polymorphic addition node.
Code under specialization guards is treated as fast-path code. Code
to be executed in the event of guard failure is slow-path code. Truffle
provides a DSL [15] consisting of class and method annotations that
reduce the programming burden of implementing specializations
and polymorphic inline caches. Programmers annotate specializa-
tion methods with the @Specialization annotation and a compiler
generates the boilerplate.

Truffle expects that interpreter trees stabilize at run time. The
Graal JIT has special knowledge of Truffle interpreter nodes and
it can inline their execution methods once the tree is stable. Inlin-
ing eliminates dispatch, Graal eliminates the local variable frame
(replacing it with local variables) and fast-path code is compiled to
machine code.

The interpreter must exhibit stable function dispatch to allow
further optimizations. Caching call targets into their call-site in-
terpreter nodes achieves this. Graal treats a cached call target as
a constant, clones its corresponding root interpreter node (in un-
specialized state) and inlines it into the call site. There are two
benefits to doing this. Firstly, the overhead of the lookup and dy-
namic dispatch is eliminated. Secondly, the inlined call target code
can now specialize to values specific to its former call site.

The success of applying Truffle and Graal to DynSem specifica-
tions depends on being able to specialize the specification inter-
preter first to the program structure and then to the runtime values
of the running program.

3 A PURE TRUFFLE META-INTERPRETER
In this section, we describe the architecture of a puremeta-interpreter
for DynSem that satisifies the requirement of a fast turnaround time
during language development by interpreting (instead of compiling)
semantics specifications. The architecture is illustrated by the dia-
gram in Figure 1. The meta-interpreter loads an explicated DynSem
specification, parses an object program to obtain an abstract syntax
tree, and then evaluates the object program by reducing its abstract
syntax tree according to the rules of the specification.

We implement the meta-interpreter in Java as a Truffle AST
interpreter. In a meta-interpretation approach the AST nodes that
are interpreted represent the specification AST, rather than the
object program AST. The interpreter executes the specification
consuming the program terms as input. This is in contrast to a
direct interpretation approach where interpreter nodes are derived
from the program AST and their execution directly evaluates the
program.

3.1 Rule Registry
At startup the interpreter builds a rule registry, analogous to a func-
tion table in other programming languages. The registry maintains
a mapping from specialized arrows to bundles of rules. A generic
arrow name (x , S), together with the constructors that populate
sort S , derive specialized arrows (x , ty) for each constructor of sort

Rule

Input

Pattern Pattern

Premise* Result

Build Build

input
term

input
components

output
term

output
components

1

2

3

4 5

6

7
8

9*

10
11

12

13 14

15

16

17

Figure 3: Structure of the reduction rule interpreter node.
Dashed lines and their labels indicate control flow during
interpretation.

S with type ty1. The left-hand side pattern of a rule together with
its arrow name indicate the specialized arrow that it populates.

Overloaded rules will populate the same specialized arrow. For
example, the Plus rules of Figure 2 all populate the specialized
arrow (””, Plus/2). The rule registry bundles together rules that
populate the same specialized arrow.

The type of terms and patterns is encoded as follows. The type
of a constructor termC(k∗) of sort S isC/|k∗ |. The type of the type
of C(k∗) is S , the sort of C/|k∗ |. A list term has type List(S) where
S is the sort of the elements contained. Finally, a tuple term has
typeTuple(S∗) where S∗ is a list of the element sorts in the makeup
of the tuple. A type together with an arrow name identify a set of
rules.

3.2 Rule Execution
The meta-interpreter creates an interpreter AST for each rule of
the specification. A rule node is an executable root node, i.e. it does
not have a parent. Rule nodes conform to the structure of Figure 3.
Each rule has an inputs node, any number of premise nodes and a
result node.

A rule maintains a frame descriptor of the meta-variables de-
clared in the rule. The frame descriptor informs the instantiation
of a new rule frame for each invocation of the rule. The execution
methods of all nodes in the interpreter are parameterized with the
rule frame so that they can read and write meta-variables.

On invocation, a rule receives an array of the input program
term and the semantic components to be propagated. Evaluation
proceeds as indicated by the dashed arrows of Figure 3. The rule
evaluates the input node which pattern matches the input term and
binds meta-variables to sub-terms. The rule then evaluates each of
the premise nodes in order, updating the bindings in the rule frame.
The rule wraps up by evaluating the result node which extracts
the computed result and the values of the read-write semantic
components from the frame and returning.

1In the algebraic terminology of DynSem, the only types are ‘sorts‘ (such as Exp). Here
we convert to object-oriented terminology, also turning the constructors of a sort into
types. Rule bundles define the implementation of the arrow (execution method) for a
particular type.
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public abstract class ConBuild extends TermBuild {
private final String name;
private final String sort;
@Children private final TermBuild[] children;

public ConBuild(SourceSection source, String name,
String sort, TermBuild[] children) {

super(source);
this.sort = sort;
this.name = name;
this.children = children;

}

@Specialization
public ApplTerm doBuild(VirtualFrame frame) {

Object[] args = new Object[children.length];
for (int i = 0; i < children.length; i++) {
args[i] = children[i].executeGeneric(frame);

}
return new ApplTerm(sort, name, args);

}
}

Figure 4: Interpreter node for building constructor terms.

3.3 Term Building and Pattern Matching
A rule is an orchestration of the basic DynSem operations of term
construction and pattern matching. We implement both term con-
struction and pattern matching as executable meta-interpreter
nodes.

Term builders. A term building node is a either a literal term
construction node or a meta-variable reading node. Term building
nodes are created at run time from term building operations in the
specification. The building of IntV(42), for example, is interpreted
by a constructor build node that instantiates a constructor term
with the sub-term 42 and associates sort V with the newly built
term. Figure 4 shows the node which implements constructor term
building. When executed the node builds an array of sub-terms and
instantiates a new constructor term. Construction of list and tuple
terms is similar.

Pattern matchers. A pattern match node is a conditional decom-
position of a term into its sub-terms which optionally binds meta-
variables in the process or simply a meta-variable write node. The
match pattern Plus(e1, e2), for example, checks that a term is
a constructor term of type Plus/2 and executes pattern matches
e1 and e2 on its sub-terms. In this case both e1 and e2 are inter-
preter nodes which bind a meta-variable in the rule frame. The
node implementing constructor matching is shown in Figure 5.

Patterns can be arbitrarily nested. The pattern [a, IntV(42) | _],
for example, checks that a term is a list with at least two elements,
checks that the second element matches the pattern IntV(42) and
binds the meta-variable a to the head of the list. Pattern match fail-
ure is an intrinsic control-flowmechanism in DynSem. Note that the
node of Figure 5 raises an exception (PremiseFailureException)
upon failure. This exception is caught only by the call-site of the
rule that owns the failed pattern match. The exception is thrown
to quickly abort computation of the rule and return control to the
caller.

public abstract class ConMatch extends MatchPattern {
private final String name;
@Children private final MatchPattern[] children;

public ConMatch(SourceSection source,
String name, MatchPattern[] children) {

super(source);
this.name = name;
this.children = children;

}

@Specialization @ExplodeLoop
public void doCon(VirtualFrame frame, ApplTerm con) {

if (!stringEq(name, con.name()) ||
children.length != con.size()) {

throw PremiseFailureException.SINGLETON;
}
Object[] subterms = con.subterms();
for(int i = 0; i < children.length; i++) {

children[i].executeMatch(frame, subterms[i]);
}

}

@TruffleBoundary
private boolean stringEq(String a, String b) {
return a.equals(b);

}
}

Figure 5: Interpreter node for pattern matching constructor
terms.

3.4 Premises
Premise nodes are either match premise nodes or relation premise
nodes.

Match premises. Match premise nodes derive fromDynSempremises
of the form b⇒ p, where b is a term builder and p is a match
pattern. Math premises are used to either deconstruct terms into
sub-terms, or to bind meta-variables, or both. The match premise
e ⇒ Plus(e1, e2), for example, is a conditional match premises
which invokes term build e and applies pattern Plus(e1, e2) to the
built term. If the term conforms to the pattern (i.e. that the type of e
is Plus/2) meta-variables e1 and e2 will be bound to the sub-terms
of e in the rule frame. A failure to match will return control directly
outside of the rule holding the premise.

Relation premises. A relation premise is analogous to a function
call in other programming languages. It consists of building an input
for the call, looking up a bundle of rules and of dispatching to it pro-
viding the input. Consider premise E ⊢e1 :: H1 −→ IntV(i) :: H2

from the rule of Figure 2b. Reducing e1 requires looking up the
bundle of rules of specialized arrow (””, ty), where ty is the type of
e1, and applying it on the input term consisting of e1 and semantic
components E and H1. The pattern IntV(i) is applied to the result
of bundle evaluation.

A bundle consists of one or more rules. The call-site dispatch
is responsible for selecting the correct rule from the bundle. The
mechanism works as follows. Assume, for example, that e1 has type
Plus/2. Firstly, a rule registry lookup retrieves the bundle identified
by specialized arrow (””, Plus/2). Secondly, rules in the bundle are
invoked in succession until the first one that succeeds. When a rule
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fails it raises an exception (PremiseFailureException), which is
intercepted by the dispatch node. When a rule succeeds it returns
a result. The result of dispatch is the result of the first successful
rule from the bundle.

There is a fallback mechanism for constructor terms. If all rules
identified by the specialized arrow (””, Plus/2) fail and, since Plus/2
is a constructor type, a new dispatch to sort-wide rules is made.
In our example, this dispatch attempts to apply the bundle of
rules identified by unspecialized arrow (””,Exp) to the same in-
put. This fallback mechanism is analogous to doesNotUnderstand
in Smalltalk [5], or methodMissing in Ruby. The distinguishing fea-
ture of DynSem is that there is no a priori way to determine whether
a rule will succeed or not. This is a limited form of backtracking
in the dispatch mechanism. Backtracking is limited because it is a
meta-programming error if no rules are able to reduce a term.

4 HYBRID META-INTERPRETER
Pure meta-interpreters are slow because generic term libraries ob-
fuscate program-specific structures from the VM thereby defeating
the JIT. We first analyze why this happens and the opportunity
loss this represents, and we propose a hybrid meta-interpretation
solution that combines meta-interpretation with generated compo-
nents.

4.1 Performance of Pure Meta-Interpretation
In a pure meta-interpreter the term data type used to represent
the object-language directly interprets the specification to con-
struct and decompose instantiations using a generic (untyped) term
library. A term construction IntV(1) is interpreted as the instantia-
tion of a generic constructor term with the name IntV and an array
of size one for the sub-term. As a consequence, a pattern match
for IntV(1) expects a generic constructor term and performs string
and arity comparisons to decide the match.

Such an approach leads to a correct semantics but comes with ex-
ecution overhead that is hard to specialize. First, string comparisons
are slow. We can work around this by realizing that pattern match-
ing does not require general string comparison but only string
equality checking. A maximal sharing scheme (e.g. string intern-
ing) can improve enable reference equality checking, solving the
immediate issue. However, deciding a pattern match still involves
three checks and a few calls: a loose type guard that the term is a
constructor, a string reference equality check and an arity equality
check. These checks cannot be readily JIT-ed away so their cost
remains. Furthermore, accessing sub-terms remains a generic oper-
ation because the layout of the term is generic. The bottom line is
that the VM treats object language terms as opaque dynamic values
flowing through the meta-interpreter. To improve on this situation
we need to give the VM a fast and specific way to check pattern
matches and some hints of term layouts.

4.2 Solution: Specializing Term Structure
The solution is to promote object language (program and value)
terms to first class citizens of the meta-interpreter, i.e. to give each
object language term constructor a specialized type and each term
operation (matching and constructing) a specialized implementa-
tion. In this scenario a pattern match becomes a tight type check.

public abstract class Exp implements IApplTerm {
@Override
public final Class<? extends IApplTerm> getSortClass() {
return Exp.class;

}

(a)

public final class Plus_2 extends Exp {
public final static String CONSTRUCTOR = "Plus";
public final static int ARITY = 2;

private final Exp _1;
private final Exp _2;

public Plus_2(Exp _1, Exp _2) {
this._1 = _1;
this._2 = _2;

}

public Exp get_1() { return _1; }

public Exp get_2() { return _2; }

(b)

Figure 6: (a) signatures of Exp sort and Plus term, (b) gener-
ated class for sort Exp and (c) generated term class for Plus
constructor

The tight type check informs sub-term accesses about the precise
layout of the term. Knowing the precise layout of a term allows the
JIT to eliminate the dynamic dispatch for sub-term accesses and
inline them. This applies in general: the tighter a type guard the
more specific the JIT-ed code will be.

We make term types of the object language explicit by statically
generating a term data type from the signatures of the object lan-
guage. The data type consists of classes for constructors, lists and
tuples as well as term building, pattern matching and type cast-
ing nodes specific to each signature. The meta-interpreter enacts
a specification with respect to this term data type. The result is a
hybrid meta-interpreter which combines interpreted and compiled
code. We explain the makeup of this data type and how it works.

4.3 Terms
We use term signatures to derive a set of term classes that is specific
to an object-language. Instances of the term classes are created by
the parser.

A sort declaration S derives an abstract term class S, as de-
picted in Figure 6a for the sort Exp. The class provides a method
getSortClass which returns a reference to the class S itself. This
method is used when dispatching to fallback rules in order to de-
termine the arrow (x ,Exp) of the fallback rules.

Constructor declarations C: S1 * S2 * ... * Sn → S derive
term classes named C_n extending S. Classes declare fields _i of type
Si and accessor methods for every child as illustrated in Figure 6.
Fields are declared final to ensure that terms are immutable. Term
immutability allows the meta-interpreter to safely cache terms
and potentially allows the JIT to inline field accesses. The precise
type declaration of fields provides type information to the VM and
prevents accidental construction of malformed trees. Tuples derive



Specializing a Meta-Interpreter ManLang’18, September 12–14, 2018, Linz, Austria

term classes by a similar mechanism, encoding every element of
the tuple as a typed field. Lists are encoded as cons-nil lists, one
of every type of list used and are also immutable. Standard Java
classes are used to represent leaf types such as String and int.

4.4 Term Construction

public abstract class Exp_B extends TermBuild {
public Exp_B(SourceSection source) {

super(source);
}

@Override
public abstract Exp executeGeneric(VirtualFrame frame);

@Override
public abstract Exp executeEvaluated(

VirtualFrame frame,
Object... terms);

}

(a)

@NodeChildren({
@NodeChild(value = "tb_1", type = Is_Exp.class),
@NodeChild(value = "tb_2", type = Is_Exp.class) })
public abstract class Plus_2_B extends Exp_B {
public Plus_2_B(SourceSection source) {

super(source);
}

@Specialization(limit = "1", guards = {
"t_1 == t_1_cached",
"t_2 == t_2_cached" })

public Plus_2 doCached(Exp t_1, Exp t_2,
@Cached("t_1") Exp t_1_cached,
@Cached("t_2") Exp t_2_cached,
@Cached("doUncached(t_1, t_2)")

Plus_2 cachedTerm) {
return cachedTerm;

}

@Specialization(replaces = "doCached")
public Plus_2 doUncached(Exp t_1, Exp t_2) {

return new Plus_2(t_1, t_2);
}

}

(b)

@NodeChild(value = "tb", type = TermBuild.class)
public abstract class Is_Exp extends TermBuild {
public abstract Exp executeCast(VirtualFrame frame);
public abstract Exp executeCastEvaluated(Object term);

@Specialization
public final Plus_2 doPlus_2(Plus_2 term) {

return term;
}
...

}

(c)

Figure 7: Generated classes for (a) termbuilds of the Exp sort,
(b) termbuilds of the Plus termand (c) type cast node for sort
Exp

Object-language terms are initially constructed by the parser
but additional terms will need to be constructed at run time. This
happens when value terms are built and when semantics of an
object-language construct is given by desugaring to another con-
struct of the language.

A sort declaration S derives an abstract interpreter node S_B as
illustrated in Figure 7a. It provides extension points for concrete con-
structor building nodes. Constructor declarations C:S1*S2*...*Sn→ S

derive interpreter nodes for term construction named C_n_B extend-
ing S_B as shown in Figure 7b. The generated nodes use the Truffle
specialization DSL [15] to declare term building children for ex-
pected sub-terms.

Each term construction node declares two @Specialization an-
notated methods. The doCached method maintains an inline cache
of a term being built. The cache is guarded by referential equality
of the children terms with respect to those in the cache. Caching
ensures that as long as the sub-terms built are constant the emitted
term is constant. The runtime effect is that entire tree allocations
can be elided by reusing cached terms. The cache mechanism is
transparent with respect to rule frames and rule results. As long as
the sub-terms are constant the allocation can be elided.

Caching is most useful for rules which give the semantics of
a construct in terms of another construct. For example, the rule
Gt(e1, e2) −→ Lt(e2, e1), generates program terms at runtime.
Since the program is stable, the sub-terms e1 and e2will be constant
and the entire construction of Lt(e2, e1) can be replaced by a
guarded cache access at run time.

Caching is beneficial beyond avoiding allocations. As long as
the input term to a pattern match is constant (or at least perceived
to be constant) the type check guarding the pattern match can be
eliminated and the term decomposition can be constant folded. The
cache has a single cell. Once a cachemiss occurs the node transitions
to the doUncached specialization. A cache miss in a subtree will
propagate a wave of cache misses to its parents without affecting
caching in siblings.

Construction nodes for lists and tuples are similarly generated.
The meta-interpreter provides hand-implemented nodes for access-
ing meta-variables and constructing terms of leaf types (e.g. String
and int). Interning of strings and unboxing (actually avoiding box-
ing altogether) for numbers keeps reference equality checks in
cache guards sane.

4.5 Type Casts
Leaf-type guards, i.e. checks for types at the leafs of the inheritance
hierarchy using instanceof, result in faster machine code than
looser type guards on intermediate types, especially when running
on the Graal VM. Intuitively this is easy to explain. First, checking
for leaf types is the cheapest kind of type check, since it just requires
checking for type equality instead of traversing the type hierarchy
to do subtype checking. Second, after code is inlined it will contain
some nested type guards. The tighter the outer guards, the more
of the nested guards will be eliminated, since they are implied by
the outer guards. Third, code that invokes a method on an object
whose precise type is known (through a leaf-type guard) is known
to always invoke the same target method and so a lookup is no
longer required.
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public abstract class Plus_2_M extends MatchPattern {
@Child private MatchPattern p_1;
@Child private MatchPattern p_2;

public Plus_2_M(SourceSection source,
MatchPattern p_1, MatchPattern p_2) {

super(source);
this.p_1 = p_1;
this.p_2 = p_2;

}

@Specialization
public void doMatch(

VirtualFrame frame, Plus_2 term) {
p_1.executeMatch(frame, term.get_1());
p_2.executeMatch(frame, term.get_2());

}

@Fallback
public void doFailed(Object term) {

throw PatternMatchFailure.SINGLETON;
}

}

Figure 8: Generated match pattern for the Plus constructor
term.

In a naive term data type, non-leaf type checks in the meta-
interpreter occur for every child of a term construction node. Con-
sider the signatures of Figure 2a and the specialization methods of
Figure 2c. Prior to invoking the evaluation method, sub-terms have
to be verified to be instances of Exp. This is a non-leaf type check.

We wrap every sub-term construction into a type cast node.
Every sort declaration S derives a type cast node Is_S. Consider
the signatures of Figure 2a and the derived type casting node of
Figure 7c. The type cast node declares a specialization method for
each constructor of sort S. A specialization method is applicable if
the sub-term construction builds a term that passes the type guard
of the method. The specialization doPlus_2 is only applicable if
the sub-term constructed is an instance of Plus_2. Type cast nodes
have a number of advantages.

First, they perform leaf-type checks only. This is particularly
useful when sub-terms are read from meta-variables and nothing is
known about their type. Second, a type cast node speculates that the
concrete type of the sub-term is constant at run time and specializes
to it. Third, inlined code coming from type cast nodes will contain
leaf-type guards. Subsequent type guards can be eliminated and
method dispatches can be inlined. Both result in faster machine
code.

4.6 Pattern Matching
A constructor patternmatch node is responsible for decidingwhether
an input term is a constructor term of the expected kind and for
dispatching matches on its sub-terms. Constructor declarations
C: S1 * S2 * ... * Sn→ S derive pattern matching interpreter
nodes named C_n_M. For example, the Plus signature of Figure 2a
derives the patternmatching node Plus_2_M of Figure 8. Eachmatch-
ing node declares two methods to handle the success and failure
cases. If the incoming term is of the expected type (doMatch case)

then pattern matching is dispatched on the sub-terms. If the incom-
ing term is not of the expected type (doFailed case) the pattern
fails immediately by raising an exception. Pattern match nodes for
lists and tuples are derived similarly.

We model pattern match failure by raising a specific exception,
conversely we model success by uninterrupted evaluation. This re-
flects our expectation that pattern matches succeed more often than
they fail. Alternatively, we could model outcomes with a boolean

flag and chain pattern matching of sub-terms with a short-circuiting
conjunction (&&) operator. We observed no significant performance
difference between the two designs. We choose to model pattern
match failure with a control flow exception because it makes for
cleaner code. Notice that success and failure methods of the pattern
matching node are annotatedwith @Specialization and @Fallback,
respectively. This reflects our speculation that a patternmatch tends
to either always succeed or always fail. Pattern matches are either
applied to program terms or to value terms. Program terms are not
likely to change and neither is the outcome of a pattern match on
them.

The outcome of the outermost pattern match on a value term
is unlikely to flip-flop because the type of the value term that is
being matched is determined by the program term that reduced to it.
Consider the pattern match IntV(i) of the first premise of Figure 2c
and assume that e1 is a function call. Tiger is a statically typed
language, so if the interpreted program type-checked the pattern
match will always succeed at run time. In a dynamic language
however, it is possible that e1 will evaluate to varying types during
execution, i.e. the outcome of the pattern match may vary. However,
after specialization, call target splitting and inlining, it is very likely
that the function call of e1 exhibits a constant type and so the
pattern match will stabilize. If its type is truly dynamic the pattern
match node will flip-flop with some overhead. We have yet to
experience this in the wild though.

5 EFFICIENT RULE DISPATCH
We propose two mechanisms by which to improve the efficiency
of rule invocation in the meta-interpreter. The two mechanisms
work together to stabilize rule dispatch and thus to allow Graal to
eliminate it completely.

In the ideal case, sufficient rule splitting and inlining occurs such
that the executing interpreter tree has exactly the same shape as
the AST of the program, i.e. there is no more specification-induced
dispatch.

The issue is circular and widespread: if the target of a relation
premise is not stable (e.g. due to varying input terms) then it is not
inline-able. If a rule is not inlined then it will be exposed to varying
program terms and so the rules it calls will not be inline-able either.

5.1 Caching Rule Bundles
Statically, a relation premise of the form e −→ v identifies the set of
all rule bundles populating the arrow (””, S) and its specializations
(””, ty), where S is the sort and ty is the type of e. For example, the
premises in Figure 2b identify all the bundles of arrow (””,Exp) and
its specializations. But at run time, in the presence of a concrete
type ty the premise identifies the specialized arrow (””, ty) and
hence a specific bundle of rules. We speculate on the boundedness
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Figure 9: AST of the first relation premise of Figure 2c after
it has been applied to two different Exp terms.

and stability of program terms, and therefore of the specialized
arrows invoked by premises to enable caching of rule bundles at
the call-site.

Figure 9 shows a schematic view of the AST of relation premise
e1 −→ IntV(i1) of Figure 2c. The relation has already invoked spe-
cialized arrows (””, Plus/2) and (””, Int/1) because it has observed
two types of input terms: a nested addition and an integer literal.

A dispatch node maintains a polymorphic inline cache of rule
bundles. The premise of Figure 9 has cached rule bundles for spe-
cialized arrows (””, Plus/2) and (””, Int/1). When the premise is
executed again, if its input term has either type Plus/2 or Int/1
the cache will be hit and the rule registry lookup will be avoided.
Otherwise a cache miss occurs and a new lookup is performed. The
cache is bounded and the dispatch node will perform full lookups
if the cache is full. There is no cache invalidation because DynSem
rules are fixed during execution.

The larger the cache size the more variability the dispatch node
can tolerate and the more it can specialize to program structure. On
the one hand a small cache size means a lower memory footprint
and shorter cache-lookup times. On the other hand an infinite cache
guarantees that all call targets are linked into the relation premise
and the hot ones can be inlined. When Graal clones the parent rule
for inlining the entire cache is discarded so the overhead disappears.

5.2 Dispatch Trees
Overloaded DynSem rules are bundled together in the rule registry,
as we discussed in Section 3. There is no caller-side mechanism
to select from the bundle a rule that will succeed without actually
executing it. At the same time executing a rule and observing that
it fails has a non-zero computational cost. Additionally, the fallback
mechanism for constructor reductions requires that all rules have
failed prior to its enactment. The second of two mechanisms we
propose addresses the issue of optimizing call-sites to efficiently
handle bundled rules and fallbacks.

We speculate that a rule that has succeeded once is likely to
succeed again and conversely a rule that has failed once is likely to
fail again. We encode bundles and fallback bundles as dispatch trees.
Dispatch trees draw from the dispatch chains of Marr et al. [22].
The core idea is to maintain at the dispatch node a sequence of rules
that have been applied. The sequence of rules grows at the head
such that successful rules are kept closest to the dispatch node.

Uninit Expanding Expanded

Cached 
Dispatch

(x, ty)

Expanding

Rule1 Rule2

Rule1

Rule2

Rule1

Dispatch
Tree

Dispatch Tree

Figure 10: Structure and evolution of a dispatch tree.

Figure 10 shows how a dispatch tree evolves over successive
executions. At first, a dispatch tree is uninitialized (Uninit). At its
first execution it retrieves a rule bundle from the rule registry and
replaces itself with an Expanding dispatch tree.

An Expanding node maintains a bundle and a chain of rule tar-
gets. When invoked an Expanding node will evaluate the chain of
rules until the first one that succeeds. Initially the chain consists
of a single rule. The dispatch tree will remain fixed for as long as
the chain succeeds. Upon failure of the chain, the Expanding node
removes a new rule from the bundle, inserts it at the beginning of
the chain and evaluates just this first target. The process repeats
until either a succeeding rule is inserted or the bundle is empty. In
the latter case the Expanding node transitions to an Expanded node.

The Expanded node inherits the fully-expanded rule chain and
creates a new dispatch tree for fallback dispatch. In subsequent
executions the Expanded node will first evaluate the entire dispatch
chain and only execute the fallback tree if the chain fails. The tree
remains Expanded until the parent rule is cloned again or execution
ends. Note that sort-wide fallback rules only exist for constructors;
an Expanded node will not create a fallback dispatch for other terms.
Therefore at most two dispatch trees are ever nested in a dispatch
node.

DynSem specifications do not regularly have heavily overloaded
rules. For such rules the dispatch trees are compiled efficiently to
simple control-flow. In the case of heavily overloaded rules the
peak performance that should be achievable is comparable but the
compilation workload is significantly higher due to chain length.
We discuss this and possible solutions in Section 7.

6 RECURSION ELIMINATION
DynSem does not have higher-order functions nor any builtin loop
constructs. As a result specifications rely on recursive rules to spec-
ify list-traversals and loop semantics. The evalArgs meta-function
of Figure 2e is a classic example of using recursion to traverse a list
in DynSem.

We do not perform any source-to-source transformations to re-
move recursive calls. Recursion elimination is not always possible
and, as we will explain, not always required. We distinguish two
types of recursion in specifications: statically bounded and dynam-
ically bounded. Recursion in rules such as evalArgs is statically
bounded: the recursion depth is syntactically fixed by the program.
Statically bound recursion is beneficial because it clearly exposes
the structure of the interpreted program.We rely on the just-in-time
compiler to unroll and inline the recursion call tree for statically
bounded recursion. At run time, after the top-level invocation of
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the evalArgs rule is inlined, the rest of the call tree will also be
inlined.

6.1 Dynamically Bounded Recursion – Loops
Consider the rule of figure Figure 11a describing a Tiger while
loop by desugaring it to an if term. Notice the arbitrarily deep call
tree resulting from successive invocations of the While/2 rule. The
depth of the tree is determined by the number of loop iterations
which is dynamic. From the perspective of a just-in-time compiler
loops that depend on runtime values are unbounded. If Graal would
begin inlining the calls that make up the loop call tree it would give
up due to too deep inlining. Rules such as the one of Figure 11a are
also non-trivial to optimize statically. At a minimum we must at
least instruct Graal that a call-tree is part of a loop construct and
those calls should not be inlined.

As a solution we provide a library of loop semantics that semanti-
cists can reuse to describe looping constructs. The library comes in
two variants: a first provides a pure (recursive) DynSem implemen-
tation to be used for reasoning about programs; a second relies on
a native implementation of a loop provided by the meta-interpreter.
The two have the same API and semantics and are interchangeable.
The language designer can choose between them by changing an
import.

The two variants share the signatures of Figure 11b. Figure 11e re-
duces while loop expression of Tiger to the meta-function provided
by the library. The native library implementation of Figure 11d
is simply a wrapping call to the natively-provided _while rule.
DynSem has special knowledge of this native rule and replaces
use-sites of _while by special calls to a repeating node. Invocations
of the _while rule are evaluated iteratively. This ensures that the
size of call tree is bounded and the just-in-time compiler can inline
rules. The repeating node of the meta-interpreter uses a dedicated
Truffle node for repeating constructs [36, 37].

The performance benefit of native loops is visible for loops with
many iterations. The call tree of short loops is relatively small and
Graal can usually compile it efficiently if we allow it to. On long
loops however, inlining would not be possible without the native
loop library. The primary benefit of the native library is therefore
that inlining is at all possible.

7 EVALUATION
We evaluate the speedup the techniques presented in this paper
give to the Tiger interpreter when running on the Graal VM as
compared to the standard Java Virtual Machine. We describe the
experiment setup and discuss results.

Subjects. Four meta-interpreter variants are evaluated: a hybrid
meta-interpreter complete with all techniques discussed (Full), a
pure meta-interpreter without generated components (-Hybrid), a
complete hybridmeta-interpreterwithout dispatch caching (-DCache),
and a complete hybrid meta-interpreter without dispatch trees
(-DTree).

We also evaluate three styles of semantics for Tiger: a speci-
fication using native loops (Regular), a specification using pure
(recursive) loops (PureLoop), and a specification with very heav-
ily overloaded rules (Overload). The heavily overloaded flavor is

w@While(e1, e2) −→ IfThen(e1, Seq([e2, w]))

(a)

signature
sorts Cond Eval
constructors
whileLoop: Cond * Eval * V→ Eval

arrows
Eval −→ V
Cond −→ Bool

(b)

c −→ cv;
case cv of

false→ v0⇒ v
true → e −→ _; w −→ v

−−−−−−−−−−−−−−−−−−−−−−−−−−

w@whileLoop(c, e, v0) −→ v

(c)

signature
arrows
_while(Cond, Eval, V) −→ V {native}

rules
whileLoop(c, e, v) −→ _while(c, e, v)

(d)

While(e1, e2) −→ whileLoop(e1, e2 , UnitV())

(e)

Figure 11: (a) Indirectly recursive rule for a while loop (b)
shared signatures for library while loop (c) pure DynSem
while loop (d) native while loop (e) loop library usage in
Tiger

unrealistic in that all evaluation flows through a single specialized
arrow that is populated by 44 rules.

Workloads. We migrated a subset of benchmark programs [20]
that could be implemented in Tiger, resulting in 5 workloads: list
creation and traversal, solver for the 8-queens problems, array per-
mutations, sieve of Eratosthenes, towers of Hanoi. We created an
additional workload consisting of a long-running while-loop. We
modified the programs to repeat 30 times and record the duration
of each repetition.

Method. Measurements are taken on an otherwise idle MacBook
Pro 11,1, Intel Core i7 2.8Ghz, 16GB of RAM running macOs 10.13.4.
JVM and Graal VM (GVM) workloads are run on Java Virtual Ma-
chine 1.8.0_144 and Graal VM version 1.0.0-rc1, respectively.
VM arguments are passed to reduce garbage collection work and
increase stack size2. An additional argument is passed to runs on
GVM to disable background compilation3.

We discard the first 10 measurements to account for warm-up
time and we use the median execution time of a workload on the
JVM as the baseline for that workload. Other execution times for
a workload are normalized against this baseline on the JVM. The
2-Xss64m -Xms1g -Xmx1g
3TruffleBackgroundCompilation=false
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Figure 12: Speedup on the Graal VM compared to the JVM
for different meta-interpreter flavors (higher is better).

aggregate speedup of a benchmark is the median of its normalized
execution times.

Reproducibility. An artifact4 is available for recreating the ex-
periments. The archive contains the raw data collected, workloads,
meta-interpreter flavors, Tiger flavors and instructions.

7.1 Results
Meta-interpreter flavors. Figure 12 shows the speedup of meta-

interpreter flavors with respect to running on the JVM. The fully
featured hybrid meta-interpreter is between 6 and 15 times faster
on the GVM than on the JVM. We observe a benefit of hybrid
interpretation (Full) over the pure interpretation (-Hybrid). The
benefit is partially due to term-specific pattern matching, which
results inmore efficient code. This supports our decision to statically
generate term data types.

Dispatch caching and dispatch trees, or the lack thereof (-DCache
and -DTree), play a significant role in speedup of execution. Note
that the effect of these optimizations is felt only when both are
used. When dispatch targets are not cached (-DCache) the effect
of dispatch trees is not significant. To take advantage of dispatch
trees Graal must first evaluate that the target of a dispatch is stable.
When dispatch caching is enabled but full bundles are cached in-
stead of trees (-DTree) the performance is comparable. Dispatch
involves attempting the targets in order until the first that succeeds.
The problem is twofold: control-flow inside the dispatch node is
obfuscated by the bundle iteration, and successful rules are not pri-
oritized over failing ones. Using both dispatch caching and dispatch
trees (Full) allows dispatch to stabilize and calls to be inlined.

Specification styles. Turnaround across the specification styles
averages at 5.2s consisting of 2.4s for specification processing such
as explication of semantic components, and 2.8s for term library
generation. Additional time is spent to compile the generated Java
sources. Speedups on the Graal VM with respect to the JVM are
shown in Figure 13 for the three styles of Tiger specification. Using
native loops (Regular) delivers better performance than recursive
loops (PureLoops) on most workloads. The benefit is quite small
4https://bitbucket.org/slde/manlang18-benchmarks/src/manlang18
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Figure 13: Speedup on the Graal VM compared to JVM for
different specification flavors (higher is better).

though and on the while-loop workload the effect is adverse. We
conjecture that there are two reasons for this. First, the native
implementation of the loop node must do intricate bookkeeping
for semantic components which adds some overhead. Second, it is
achievable for Graal to inline the recursive loop iterations because
the program is trivial and the interpreter AST does not explode.
The issue requires further investigation.

The unrealistically overloaded specification (Overload) incurs
significant overhead, both on the JVM and on GVM. On the JVM this
is to be expected: potentially very many rules have to be invoked
to find a successful call target. This translates to many wasted
dispatches. The overhead on GVM is unexpected though. The cause
is that the interpreter AST is polluted with unsuccessful rules. A
dispatch tree grows with every attempted rule, whether successful
or not, resulting in inlining being aborted due to excess tree size.
We think a solution is to grow dispatch chains only with rules that
have succeeded, and to keep failing rules in a circular buffer.

Comparison with native interpreters. We implemented a direct in-
terpreter for Tiger in Java. It is a vanilla AST interpreter and comes
in two flavors: one using mutable maps, and one using persistent
maps for environments. On average, persistent environments in-
crease run time by 4 times. The DynSemmeta-interpreter also relies
on persistent maps for environments. The Regular specification
style on the Full GVM runtime is on average 4 times slower than
the native interpreter with mutable environments, and 25% slower
than the interpreter with persistent environments. Although Graal
can remove much of the meta-interpretation overhead, there re-
mains a significant performance gap between derived interpreters
and natively implemented ones. We expect to be able to reduce
the remaining 25% performance gap to a native interpreter with
persistent environments by tuning cache sizes to allow further
stabilization of interpreter trees. Reducing the gap to a native in-
terpreter with mutable environments requires that we eliminate
persistent environments from meta-interpreters. One possibility
to eliminate persistent environments is to derive memory layouts
from scope graphs [25, 32], the result of static name analysis of
a program, following the scope-as-frames [29] approach. In the
future we plan to investigate using frame-based memory layouts in

https://bitbucket.org/slde/manlang18-benchmarks/src/manlang18
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DynSem specification and whether and by how much performance
improves if Graal can see through the memory of a program.

8 RELATEDWORK
DynSem is part of the larger family of dynamic semantics defini-
tions formalisms.

Typical DynSem specifications are in a big-step style [17]. Pet-
terson [26] describes how to merge overloaded big-step rules and
generate an interpreter. In our early experiments [33] with this
method the time spent in compilation was significant and when
run on an early Graal VM performance was poor. This served as
motivation for the development of the meta-interpreter.

The big-step rules of a DynSem specification that uses meta-
functions and implicit reductions resemble SOS [27] rules while
retaining big-step semantics. Most related to I-MSOS [24], DynSem
borrows its idea of semantic components and their implicit propa-
gation. An I-MSOS specification derives an equivalent MSOS [23]
specification by explication of semantic component propagation.
MSOS rules compile to Prolog clauses. Small-step MSOS rules can
be specialized by refocusing and striding [28] to reduce the amount
of tree traversals required during evaluation. Funcons [8] intends
to provide a definitive collection of reusable semantics. Semantics
of funcons are specified in I-MSOS.

PLT Redex [11, 19] is a domain-specific language for Felleisen-
Hieb reduction rules embedded into the Racket [12] programming
language. Pycket [4] is a tracing JIT compiler for Racket imple-
mented in RPython [2]. It shows improved performance on regular
benchmarks. We were unable to determine if and how Redex se-
mantics specifications benefit from Pycket. K [31] is a semantics for-
malism that has been applied to production-sized languages (C [10]
and Java [6]). K specifications derive an interpreter in Maude [9].

Partial evaluation [16] is an automatic program specialization
technique. Graal is a JIT compiler which partially evaluates a pro-
gram at run time. Truffle provides a set of APIs and annotations to
guide the partial evaluation. When applied to the DynSem meta-
interpreter, Graal partially evaluates the specification interpreter
with respect to a specification, akin to the first Futamura projec-
tion [13, 14] of the specification interpreter. Our experiments reveal
that some meta-interpreter overhead persists after JIT compilation,
therefore the resulting code is not Jones optimal [16]. Amin et al [1]
describe a mechanism to eliminate multiple layers of interpretation
by staging all interpreter layers together. Our approach differs sig-
nificantly in that it has no expectation of a similarity between the
object-language and DynSem and in that we rely on an existing
online partial evaluator which is not under our control.

PyPy [30] is an alternative to the Graal meta-compilation ap-
proach. PyPy translates an interpreter to C code which is executed
in an interpreter containing a tracing JIT compiler [7]. The C code
is JIT-compiled using trace information. In contrast, Truffle inter-
preters are AST interpreters that undergo online partial evaluation
to remove the interpretation overhead. Marr et al. [21] perform a
performance-oriented comparison of the the two approaches.

9 CONCLUSION & DISCUSSION
DynSem is a domain-specific language for concise specification
of the dynamic semantics of programming languages, aimed at

rapid prototyping and evolution of language designs. In our early
prototypes, DynSem specifications were compiled to an interpreter.
The process of generating an interpreter caused long turnaround
times during language prototyping. In order to shorten turnaround
times, we turned to interpreting specifications directly instead of
compiling them.

We presented the architecture of a meta-interpreter for DynSem
specifications which requires minimal pre-processing of specifica-
tions. We built the meta-interpreter as a Truffle interpreter in Java.
Striving for short runtimes we experimented with optimization
techniques that would allow JIT compilation of the meta-interpreter
on the Graal VM. We statically generated a term data type specific
to an object language, resulting in a hybrid meta-interpreter. The
data type allows Graal to optimize pattern matching and observe
the stability of program terms.

Ameta-interpreter incurs a significant performance penalty from
rule dispatch. We presented an approach to improve dispatch by
dispatch caching and by reorganizing overloaded rules into dispatch
trees. This approach allows the meta-interpreter to be JIT-ed such
that all dispatch induced by the specification is eliminated, and only
program-induced dispatch remains.

When reasoning about recursive ruleswe distinguished statically-
bound recursion that is induced syntactically by the object pro-
gram from dynamically-bound recursion which is a consequence of
looping constructs in the object language. We designed a reusable
DynSem library for loops that allows specifications to swap be-
tween purely defined loops and meta-circularly defined ones with-
out sacrificing declarativity. While meta-circular loops show an
improvement in execution time, their most important contribution
is that they prevent explosive AST growth due to inlining, which
would cause the JIT to abort compilation.

We have evaluated the effect of our optimization on the meta-
interpreter by means of an empirical evaluation on a specification
of the Tiger programming language. The combination of generated
term data type, dispatch caching and dispatch trees unlocks JIT
compilation on the Graal VM. Graal is able to inline reduction rules
and to partially evaluate pattern matching. The speedup obtained
ranges from factor 6 to factor 15, depending on the workload.

While we have achieved an order of magnitude performance
improvement by specializing a meta-interpreter, there is still a large
gap with respect to the performance of hand-written interpreters.
We believe there are further opportunities to specializing meta-
interpreters that can narrow this gap. In the future we plan to
investigate using frame-based memory layouts [29] derived from
static name binding information [25, 32] to make the memory of
running programs transparent to the JIT compiler.
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