
Towards Language-Parametric Semantic Editor
Services Based on Declarative Type System

Specifications
Daniel A. A. Pelsmaeker

Delft University of Technology

Delft, The Netherlands

d.a.a.pelsmaeker@tudelft.nl

Hendrik van Antwerpen

Delft University of Technology

Delft, The Netherlands

h.vanantwerpen@tudelft.nl

Eelco Visser

Delft University of Technology

Delft, The Netherlands

e.visser@tudelft.nl

Abstract
New programming languages often lack good IDE support,

as developing advanced semantic editor services takes ad-

ditional effort. In previous work we discussed the opera-

tional requirements of a constraint solver that leverages the

declarative type system specification of a language to pro-

vide language-parametric semantic editor services. In this

work we describe the implementation of our solver as a two

stage process: inference and search. An editor-service spe-

cific search strategy determines how and where the search

is conducted, and when it terminates. We are currently im-

plementing and evaluating this idea.
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1 Introduction
When creating a new programming language, it takes ad-

ditional effort to provide good editor services for the lan-

guage in an IDE, which is important for effective comprehen-

sion, navigation, and refactoring of the code. While existing

work addresses the problem of supporting a language across

multiple IDEs, such as using Language Server Protocol [1],
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typeOf(s, e) = ty :- e match {

True() -> BOOL == ty.

And(e1, e2) ->

typeOf(s, e1) == BOOL ,

typeOf(s, e2) == BOOL ,

BOOL == ty.

Call(x, es) ->

Method{x} in s == METHOD(targs , tret),

typesOf(s, es) == targs ,

tret == ty.

}

Figure 1. A single Statix typing rule for expressions, used

to type check True, conjunction, and method calls.

Monto [3], AESI [6], and MagpieBridge [4], none of them

address the difficulty of implementing the editor services.

In previous work [7] we argued that we can specify ad-

vanced semantic editor services as constraint problems. Con-

straints allow us to separate the declarative specification of

a problem from the operational semantics needed to solve

them. Currently, our constraint solver can only use the type

system specification to verify the correctness of a program.

In this work we outline our ideas for extending the solver,

such that it will be able to use the type system specification

for advanced semantic editor services such as semantic code

completion. We are currently implementing this extension

to the Statix constraint solver, and evaluating its capabilities

and performance.

2 Architecture
In the Spoofax language workbench [2] the static type sys-

tem of a programming language can be specified using Statix,

a meta-language for the declarative specification of static

semantics [9]. It models the static semantics of a language as

a constraint problem, and includes name binding and resolu-

tion by asserting structure and querying a scope graph [5, 8].

A typing rule for Java expressions is shown in Figure 1.

Other rules would assert scopes and edges in the scope graph.

Figure 2 shows a small Java example program and the cor-

responding scope graph, where scope 0 is the root scope in
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public class C {

boolean m(int x, int y) {

return (x == y) && $Exp

}

int f() { return 42; }

}
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C : class(1) :

m : (int, int) → bool:

f : () → int:

x : int:

y : int:

Figure 2. Incomplete example Java program with a place-

holder $Exp, and its corresponding scope graph.

which the class C is declared, scope 1 is the scope within the

class with the declarations of methods m and f, and scopes 2

and 3 are the bodies of those methods respectively.

The current implementation of the Statix solver is deter-

ministic: it only applies a rule if it matches the given program

construct, and does not do back-tracking. The algorithm uses

the specification to simplify constraints until only core con-

straints remain, which are solved through unification and

scope graph resolution.

We propose to extend the solver to include a limited form

of search and back-tracking. The solver will perform a two-

stage process: inference and search. In the first stage it will

perform inference by simplifying and unifying constraints

until it terminates or gets stuck. In the second stage a search
strategy determines whether it performs a search by refining

one of the constraints, splitting the search tree into multiple

branches. The solver then loops and performs inference on

each of the resulting branches. Branches that are not satisfi-

able are discarded. Other branches may yield a solution or

get stuck, and the cycle repeats.

In Statix, syntax match constraints are refined into their

constituent branches, and scope graph query constraints

are refined into the various declarations that the queries

could resolve to. The search strategy, which is specific to

the editor service, determines which constraints are refined,

and whether the algorithm continues the search. It employs

these kinds of search:

• Non-deterministic — Refines a constraint

• Deterministic — Refines the only branch

• None — Performs simplification and unification only

Performing a non-deterministic search on a constraint

variable will yield all solutions that are found after refining

only one level deep. This is useful for semantic code comple-

tion, where we return each of the solutions as completion

proposals to the user. Any constraint variables in the solu-

tion that are not ground are replaced by placeholders in the

proposed syntax. For example, in Figure 2, invoking comple-

tion on the placeholder $Exp would suggest: true, $Exp &&
$Exp, and m($Exps).
Deterministic search is useful to refine constraints for

which there is only one possibility. For example, a deter-

ministic search on the constraint variable representing the

arguments to a method m(e) results in the exact number of

arguments the method expects m($Exp, $Exp). If instead
we would have performed a non-deterministic search, we

would also get all possible values for the method arguments.

3 Conclusion
Given a type system specification of a language, we believe

many useful semantic editor services can be implemented

in a language-parametric way by just varying the search

strategy being used. This will allow complex editor services

to be supported with little to no extra effort from the lan-

guage developer. We are in the process of implementing and

evaluating the new implementation of the Statix solver. This

will also gain us insight into its limitations and which editor

services can be specified using our techniques.
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