
Safety and Completeness of Disambiguation corresponds to

Termination and Confluence of Reordering

Lúıs Eduardo de Souza Amorim1 and Eelco Visser2

1 Australian National University, Australia
LuisEduardo.deSouzaAmorim@anu.edu.au

2 Delft University of Technology, The Netherlands
e.visser@tudelft.nl

Abstract

Associativity and priority are well known techniques to disambiguate expression gram-
mars. In recent work we develop a direct semantics for disambiguation by associativity
and priority rules and prove that a safe and complete disambiguation relation produces
a safe and complete disambiguation. The proof approach relies on a correspondence be-
tween disambiguation and term rewriting such that safety of disambiguation corresponds
to termination of the rewrite system and completeness of disambiguation correspond to
confluence of the rewrite system. In this extended abstract we illustrate that approach
using diagrams.

1 Introduction

lexical syntax

ID = [a-zA-Z][a-zA-Z0-9]*

context-free syntax

Exp.Var = ID

Exp.Add = Exp "+" Exp {left}

Exp.Min = Exp "-" Exp {left}

Exp.Mul = Exp "*" Exp {left}

Exp.Div = Exp "/" Exp {left}

Exp.Pow = Exp "^" Exp {right}

context-free priorities

Exp.Pow

> {left: Exp.Mul Exp.Div}

> {left: Exp.Add Exp.Min}

Figure 1: SDF3 definition.

Associativity and priority are well known techniques to
disambiguate expression grammars. Figure 1 illustrates
the approach. An expression grammar defines the infix
operators of an expression language using left- and right-
recursive productions such as Exp.Add = Exp "+" Exp.
Such a grammar is ambiguous; an expression such as a +

b + c can be read as (a + b) + c or as a + (b + c).
One way to disambiguate an expression grammar is to
transform it to a grammar that uses extra non-terminals
to represent priority levels. However such grammars are
harder to read and the direct correspondence to the un-
derlying abstract syntax trees is lost. An alternative ap-
proach is to augment an ambiguous expression grammar
with associativity and priority rules. The semantics of
such disambiguation rules is typically defined indirectly
in the implementation of parser generators or by means of grammar transformations. In recent
work, we have developed a direct semantics for associativity and priority in terms of subtree
exclusion that extends to expression grammars with prefix and postifix operators, mixfix op-
erators, indirect recursion, and overlap. We are currently revising a paper about this work for
the TOPLAS journal [2]. A previous version of the semantics of disambiguation rules appeared
in [1], but did not feature the proof technique based on rewriting. We refer to those papers for
a discussion of related work.

To verify the approach we developed a technique based on term rewriting that shows that
soundness and completeness of disambiguation corresponds to termination and confluence re-
ordering parse trees. In this extended abstract we illustrate the proof technique for the case of
infix expression grammars. We omit formal definitions and mostly explain the approach using
diagrams.



Safety and Completeness of Disambiguation Amorim and Visser

a + b * c - d

Add

a + Mul

b * Min

c - d

Add

a + Min

Mul

b * c

- d

Mul

Add

a + b

* Min

c - d

Min

Add

a + Mul

b * c

- d

Min

Mul

Add

a + b

* c

- d

Mul

E * Min

E - E

Add

E + Min

E - E

Mul

E * Min

E - E

Mul

Add

E + E

* E

Mul > Min Add leftMin Mul > Min Mul > Add

matches matches

matches

matches

Figure 2: Parse trees for an ambiguous expression, and its disambiguation using subtree exclu-
sion rules

2 Disambiguation by Subtree Exclusion

An ambiguous sentence has multiple parse trees. The diagram in figure 2 shows the parse trees
for the expression a + b * c - d according the underlying grammar of figure 1. Disambigua-
tion by subtree exclusion defines conflict patterns that should not occur in selected parse trees.
The safe subtree exclusion rules (for infix expressions) of SDF3 [2] are defined as follows:

A.C1 > A.C2

C1

C2

α A

β

A.C1 > A.C2

C1

α C2

A β

A.C1 leftA.C2

C1

A α C2

A β A

A.C1 rightA.C2

C1

C2

A α A

β A

Instantiating these rules to some of the disambiguation rules in figure 1 leads to the following
subtree exclusion patterns (aka conflict patterns):

E.Mul > E.Add

Mul

Add

E + E

* E

E.Mul > E.Add

Mul

E * Add

E + E

E.Add left E.Add

Add

E + Add

E + E

2



Safety and Completeness of Disambiguation Amorim and Visser

Applying these rules to the expression in figure 2 shows that the sentence is completely disam-
biguated as all but one parse tree for the expression are rejected.

A set of disambiguation rules is safe when each sentence in the underlying grammar is
also a sentence in the disambiguated grammar. That is, no sentences are excluded. A set of
disambiguation rules is complete when each sentence in the underlying grammar has at most one
parse tree in the disambiguated grammar. That is, each sentence is completely disambiguated.
How can we prove that set of disambiguation rules safe and complete? That is a central question
in our work on the semantics disambiguation rules [2].

3 Proving Safety and Completeness

The central insight in our approach to proving safety and completeness of disambiguation is that
disambiguation by means of associativity and priority rules corresponds to reordering of parse
trees. For infix expression grammars we define a rewrite system generated by instiantiating the
following rewrite rule schemas for each pair of productions in a grammar:

C1

C2

t21 op2 t22

op1 t12

C2

t21 op2 C1

t22 op1 t12

RI

C1

t11 op1 C2

t21 op2 t22

C2

C1

t11 op1 t21

op2 t22

RI

When we apply these rules to the expression in figure 2, we see that all trees can be converted
into each other using these rewrite rules:

Add

a + Mul

b * Min

c - d

Add

a + Min

Mul

b * c

- d

a + b * c - d

Mul

Add

a + b

* Min

c - d

Min

Mul

Add

a + b

* c

- d

Min

Add

a + Mul

b * c

- d

yield

RI

RI

yield

RI

RI

yield

RI

RI

yield

RIRI

yield

RI

RI

3



Safety and Completeness of Disambiguation Amorim and Visser

In general, we have a theorem that states that all ambiguities in an infix expression grammar
are related by reordering, expressed diagrammatically as follows:

w

t1 . . . ti . . . tn

yield

yield

yield

RI RI RI RI

The reordering rewrite system is non-terminating. Each tree can be converted in each other
tree. Using the subtree exclusion patterns generated from the associativity and priority rules
of a grammar, we direct the rules of the rewrite system, leading to the following rule schemas:

C1

C2

t21 op2 t22

op1 t12

C2

t21 op2 C1

t22 op1 t12

if C1

C2

A op2 A

op1 A

∈ QDI

C1

t11 op1 C2

t21 op2 t22

C2

C1

t11 op1 t21

op2 t22

if C1

A op1 C2

A op2 A

∈ QRI

In our paper [2] we show that safety of disambiguation corresponds to termatination of this
rewrite system and that completeness of disambiguation corresponds to confluence of the rewrite
system. We illustrate that here using the diagrams in figures 3, 4, and 5.

Add

a + Mul

b * Min

c - d

Add

a + Min

Mul

b * c

- d

Mul

Add

a + b

* Min

c - d

Min

Mul

Add

a + b

* c

- d

Min

Add

a + Mul

b * c

- d

Mul>Min

AddleftMinMul>Add

Mul>Min Mul>Add

AddrightMin

Figure 3: Unsafety corresponds to non-termination

4



Safety and Completeness of Disambiguation Amorim and Visser

Add

a + Mul

b * Min

c - d

Add

a + Min

Mul

b * c

- d

Mul

Add

a + b

* Min

c - d

Min

Mul

Add

a + b

* c

- d

Min

Add

a + Mul

b * c

- d

AddleftMinMul>Add

Mul>Add

Figure 4: Incompleteness corresponds to non-confluence (non-Church Rosser)

Add

a + Mul

b * Min

c - d

Add

a + Min

Mul

b * c

- d

Mul

Add

a + b

* Min

c - d

Min

Mul

Add

a + b

* c

- d

Min

Add

a + Mul

b * c

- d

Mul>Min

AddleftMinMul>Add

Mul>Min Mul>Add

Figure 5: Safety and completeness correspond to termination and confluence.

References

[1] Lúıs Eduardo de Souza Amorim. Declarative Syntax Definition for Modern Language Workbenches.
PhD thesis, Delft University of Technology, 2019.

[2] Lúıs Eduardo de Souza Amorim and Eelco Visser. A direct semantics for declarative disambiguation
of expression grammars. ACM Transactions on Programming Languages, 2020. under revision.

5


	Introduction
	Disambiguation by Subtree Exclusion
	Proving Safety and Completeness

