
Multi-purpose Syntax Definition
with SDF3

Lúıs Eduardo de Souza Amorim1 and Eelco Visser2(B)

1 Australian National University, Canberra, Australia
2 Delft University of Technology, Delft, The Netherlands

e.visser@tudelft.nl

Abstract. SDF3 is a syntax definition formalism that extends plain
context-free grammars with features such as constructor declarations,
declarative disambiguation rules, character-level grammars, permissive
syntax, layout constraints, formatting templates, placeholder syntax, and
modular composition. These features support the multi-purpose inter-
pretation of syntax definitions, including derivation of type schemas for
abstract syntax tree representations, scannerless generalized parsing of
the full class of context-free grammars, error recovery, layout-sensitive
parsing, parenthesization and formatting, and syntactic completion. This
paper gives a high level overview of SDF3 by means of examples and pro-
vides a guide to the literature for further details.

Keywords: Syntax definition · Programming language · Parsing

1 Introduction

A syntax definition formalism is a formal language to describe the syntax of
formal languages. At the core of a syntax definition formalism is a grammar
formalism in the tradition of Chomsky’s context-free grammars [14] and the
Backus-Naur Form [4]. But syntax definition is concerned with more than just
phrase structure, and encompasses all aspects of the syntax of languages.

In this paper, we give an overview of the syntax definition formalism SDF3
and its tool ecosystem that supports the multi-purpose interpretation of syntax
definitions. The paper does not present any new technical contributions, but
it is the first paper to give a (high-level) overview of all aspects of SDF3 and
serves as a guide to the literature. SDF3 is the third generation in the SDF
family of syntax definition formalisms, which were developed in the context of
the ASF+SDF [5], Stratego/XT [10], and Spoofax [38] language workbenches.

The first SDF [23] supported modular composition of syntax definition,
a direct correspondence between concrete and abstract syntax, and parsing
with the full class of context-free grammars enabled by the Generalized-LR
(GLR) parsing algorithm [44,56]. Its programming environment, as part of the
ASF+SDF MetaEnvironment [40], focused on live development of syntax defi-
nitions through incremental and modular scanner and parser generation [24–26]
in order to provide fast turnaround times during language development.
c© The Author(s) 2020
F. de Boer and A. Cerone (Eds.): SEFM 2020, LNCS 12310, pp. 1–23, 2020.
https://doi.org/10.1007/978-3-030-58768-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58768-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-58768-0_1

2 L. E. de Souza Amorim and E. Visser

The second generation, SDF2 encompassed a redesign of the internals of
SDF without changing the surface syntax. The front-end of the implementation
consisted of a transformation pipeline from the rich surface syntax to a minimal
core (kernel) language [58] that served as input for parser generation. The key
change of SDF2 was its integration of lexical and context-free syntax, supported
by Scannerless GLR (SGLR) parsing [60,61], enabling composition of languages
with different lexical syntax [12].

SDF3 is the latest member of the family and inherits many features of its
predecessors. The most recognizable change is to the syntax of productions that
should make it more familiar to users of other grammar formalisms. Further,
it introduces new features in order to support multi-purpose interpretations of
syntax definitions. The goals of the design of SDF3 are (1) to support the defini-
tion of the concrete and abstract syntax of formal languages (with an emphasis
on programming languages), (2) to support declarative syntax definition so that
there is no need to understand parsing algorithms in order to understand defi-
nitions [39], (3) to make syntax definitions readable and understandable so that
they can be used as reference documentation, and (4) to support execution of
syntax definitions as parsers, but also for other syntactic operations, i.e to sup-
port multi-purpose interpretation based on a single source. The focus on multi-
purpose interpretation is driven by the role of SDF3 in the Spoofax language
workbench [38].

In this paper, we give a high-level overview of the features of SDF3 and how
they support multi-purpose syntax definition. We give explanations by means of
examples, assuming some familiarity of the reader with grammars. We refer to
the literature for formal definitions of the concepts that we introduce. Figure 1
presents the complete syntax definition of a tiny functional language (inspired
by OCaml [42]), which we will use as running example without (necessarily)
referring to it explicitly.

2 Phrase Structure

A programming language is more than a set of flat sentences. It is the struc-
ture of those sentences that matters. Users understand programs in terms of
structural elements such as expressions, functions, patterns, and modules. Lan-
guage designers, and the tools they build to implement a language, operate
on programs through their underlying (tree) structure. The productions in a
context-free grammar create the connection between the tokens that form the
textual representation of programs and their phrase structure [14]. Such produc-
tions can be interpreted as parsing rules to convert a text into a tree. But SDF3
emphasizes the interpretation of productions as definitions of structure [39].

A sort (also known as non-terminal) represents a syntactic category such as
expression (Exp), pattern match case (Case), or pattern (Pat). A production
defines the structure of a language construct. For example, the production

Exp.Add = Exp "+" Exp

Multi-purpose Syntax Definition with SDF3 3

module fun

imports lex

context-free start-symbols Exp

sorts Exp Case Bnd Pat

context-free syntax

Exp = <(<Exp>)> {bracket}

Exp.Int = INT

Exp.Var = ID

Exp.Min = [-[Exp]]

Exp.Sub = <<Exp> - <Exp>> {left}

Exp.Add = <<Exp> + <Exp>> {left}

Exp.Eq = <<Exp> == <Exp>> {left}

Exp.Fun = [fun [ID*] -> [Exp]]

Exp.App = <<Exp> <Exp>> {left}

Exp.Let = <

let <{Bnd "\n\n"}*>

in <Exp>

>

Exp.IfE = <

if <Exp> then

<Exp>

else

<Exp>

>

Exp.IfT = <

if <Exp> then

<Exp>

>

Exp.Match = <

match <Exp>

with <{Case "\n"}+>

> {longest-match}

Bnd.Bnd = <<ID> = <Exp>>

Case.Case = [| [Pat] -> [Exp]]

Pat.PVar = ID

Pat.PApp = <<Pat> <Pat>> {left}

Pat = <(<Pat>)> {bracket}

context-free priorities

Exp.Min > Exp.App

> {left: Exp.Sub Exp.Add}

> Exp.Eq > Exp.IfE > Exp.IfT

> Exp.Match > Exp.Fun > Exp.Let,

Exp.App <1> .> Exp.Min

template options

ID = keyword {reject}

keyword -/- [a-zA-Z0-9]

module lex

lexical sorts ID

lexical syntax

ID = [a-zA-Z] [a-zA-Z0-9]*

lexical restrictions

ID -/- [a-zA-Z0-9]

lexical sorts INT

lexical syntax

INT = [\-]? [0-9]+

lexical restrictions

INT -/- [0-9]

context-free restrictions

"-" -/- [0-9]

lexical sorts AST EOF

lexical syntax

LAYOUT = [\ \t\n\r]

LAYOUT = Com

Com = "/*"

(~[*] | Ast | Com)*

"*/"

Ast = [*]

LAYOUT = "//" ~[\n\r]*

([\n\r] | EOF)

EOF =

lexical restrictions

AST -/- [\/]

EOF -/- ~[]

context-free restrictions

LAYOUT? -/- [\ \t\n\r]

LAYOUT? -/- [\/].[\/]

LAYOUT? -/- [\/].[*]

let // length of a list

len = fun xs ->

match xs

with | nil -> 0

| cons x xs -> 1 + len xs

in len (cons 1 (cons 2 nil))

Fig. 1. Syntax of a small functional language in SDF3 and an example program.

4 L. E. de Souza Amorim and E. Visser

defines that an addition expression is one alternative for the Exp sort and that
it is the composition of two expressions. A production makes the connection
with sentences by means of literals in productions. In the production above, the
two expressions making an addition are separated by a + operator. Finally, a
production defines a constructor name for the abstract syntax tree structure of
a program (Add in the production above). The pairs consisting of sort and con-
structor names should be unique within a grammar and can be used to identify
productions. (Such explicit constructor names are new in SDF3 compared to
SDF2.) A set of such productions is a grammar.

The productions of a grammar generate a set of well-formed syntax trees.
For example, Fig. 2 shows a well-formed tree over the example grammar. The
language defined by a grammar are the sentences obtained by taking the yields
of those trees, where the yield of a syntax tree is the concatenation of its leaves.
Thus, the sentence corresponding to the tree in Fig. 2 is (fun x -> x + 3) y.

The grammars of programming languages frequently feature lists, including
lists of statements in a block, lists of field declarations in a class, and lists of
parameters of a function. SDF3 supports direct expression of such list sorts by
means of Kleene star and plus operators on sorts. In Fig. 1 the formal parameters
of a Fun is defined as ID*, a list of zero or more identifiers. Other kinds of list
include A+ (one or more As), {A sep}* (zero or more As separated by seps),
and {A sep}+ (one or more As separated by seps). Lists with separators are
convenient to model, for example, the arguments of a function as {Exp ","}*,
i.e. a list of zero or more expressions separated by commas.

Exp.App

Exp

(Exp.Fun

fun ID*

x

-> Exp.Add

Exp.Var

x

+ Exp.Int

3

)

Exp.Var

y

Fig. 2. Concrete syntax tree

Exp.App

Exp.Fun

ID*

x

Exp.Add

Exp.Var

x

Exp.Int

3

Exp.Var

y

Fig. 3. Abstract syntax tree

Abstract Syntax. Concrete syntax trees contain irrelevant details such as key-
words, operator symbols, and parentheses (as identified by the bracket attribute
on productions). These details are irrelevant since the constructor of a produc-
tion of a node uniquely identifies the language construct concerned. Thus, from

Multi-purpose Syntax Definition with SDF3 5

a concrete syntax tree we obtain an abstract syntax tree by omitting such irrele-
vant details. Figure 3 shows the abstract syntax tree obtained from the concrete
syntax tree in Fig. 2. Abstract syntax trees can be represented by means of first-
order terms in which a constructor is applied to a (possibly empty) sequence of
sub-terms. For example, the abstract syntax tree of Fig. 3 is represented by the
term.

App(Fun(["x"], Add(Var("x"), Int("3"))), Var("y"))

Note that lists are represented by sequences of terms between square brackets.

Signatures. A grammar is a schema for describing well-formed concrete and
abstract syntax trees. That is, we can check that a tree is well-formed by checking
that the subtrees of a constructor node have the right sort according to the
corresponding production, and a parser based on a grammar is guaranteed to
produce such well-formed trees. To further process trees after parsing, we can
work on a generic tree representation such as XML or ATerms [6], or we can
work with a typed representation. The schemas for such typed representations
can be derived automatically from a grammar. For example, the Statix language
for static semantics specification [3] uses algebraic signatures to describe well-
formed terms. The following signature in Statix defines the algebraic signature
of a selection of the constructors of the example language:

signature

sorts Exp

constructors

Fun : list(ID) * Exp -> Exp

Add : Exp * Exp -> Exp

App : Exp * Exp -> Exp

Var : ID -> Exp

Int : INT -> Exp

The SDF3 compiler automatically generates signatures for Statix [3], Strat-
ego [10], and DynSem [57].

3 Declarative Disambiguation

Multiple trees over a grammar can have the same yield. Or, vice versa, a sentence
in the language of a grammar can have multiple trees. If this is the case, the
sentence, and hence the grammar is ambiguous.

One strategy to disambiguate a grammar is to transform it to an unambigu-
ous grammar that describes the same language, but has exactly one tree per
sentence in the language. However, this may not be easy to do, may distort
the structure of the trees associated with the grammar, and changes the typ-
ing scheme associated with the grammar. SDF3 supports the disambiguation of
an ambiguous grammar by means of declarative disambiguation rules. In this
section we describe disambiguation by means of associativity and priority rules.
In the next section we describe lexical disambiguation rules.

6 L. E. de Souza Amorim and E. Visser

Disambiguation by Associativity and Priority Rules. Many language ref-
erence manuals define the disambiguation of expression grammars by means of
priority and associativity tables. SDF3 formalizes such tables as explicit asso-
ciativity and priority rules over the productions of an ambiguous context-free
grammar. While grammar formalisms such as YACC also define associativity
and priority rules, these are defined in terms of low-level implementation details
(e.g. choosing sides in a shift/reduce conflict.) The semantics of SDF3 associativ-
ity and priority rules has a direct formal semantics that is defined independently
of a particular implementation [53]. The semantics is defined by means of sub-
tree exclusion, that is, disambiguation rules are interpreted by rejecting trees
that match one of the subtree exclusion patterns generated by a set of disam-
biguation rules. If a set of rules is sound and complete (there is a rule for each
pair of productions), then disambiguation is sound and complete, i.e. assigns a
single tree to a sentence. (Read the fine print in [53].)

A priority rule A.C1 > A.C2 defines that (the production identified by the
constructor) A.C1 has higher priority than (the production identified by the
constructor) A.C2. This means that (a tree with root constructor) A.C2 cannot
occur as a left, respectively right recursive child of (a tree node with constructor)
A.C1 if A.C2 is right, respectively left recursive. A left associativity rule A.C1

left A.C2 defines that A.C1 and A.C2 are mutually left associative. This means
that A.C2 cannot occur as a right recursive child of A.C1. (Right associativity
is defined symmetrically.)

Figure 1 defines the disambiguation rules for the example language. Accord-
ing to these rules the expression a - b + c == d should be parsed as ((a - b)

+ c) == d (since Sub and Add are left associative and have higher priority than
Eq) and the expression match a with | b -> c + d should be parsed as match

a with | b -> (c + d) (since Add has higher priority than Match).
The semantics of priority shown above is particularly relevant for prefix and

postfix operators. A prefix operator (such as Match) may occur as right child
of an infix operator (such as Sub), even if it has lower priority, since such a
combination of productions is not ambiguous. For example, the expression a -

match b with | c -> d has only one abstract syntax tree.
This semantics is safe, i.e. it does not reject any sentences that are in the lan-

guage of the underlying context-free grammar. However, with the rules defined
so far the semantics is not complete. As an example consider two of the trees
for the sentence a - match b with | c -> d + e in Fig. 4. Both these trees are
conflict free according to the rules above; a Match may occur as right hand child
of a Sub and Sub and Add are left associative. The problem is that the conflict
between Match as a left child of Add is hidden by the Sub tree. To capture such
deep conflicts, the priority rule involving Add, Sub and Match is amended to
require that a right-most occurrence of a production A.C2 in the left recursive
argument of a production A.C1 is rejected if A.C1 > A.C2. (And symmetrically
for left-most occurrences in right recursive arguments.) Thus, the priority rules
of Fig. 1 select the left tree of Fig. 4.

Multi-purpose Syntax Definition with SDF3 7

Sub

Var

a

- Match

match Var

b

with Case

| PVar

c

-> Add

Var

d

+ Var

e

Add

Sub

Var

a

- Match

match Var

b

with Case

| PVar

c

-> Var

d

+ Var

e

Fig. 4. Concrete syntax trees for the expression a - match b with | c -> d + e.

The longest-match attribute of the Match production is a short hand for deep
priority conflicts for lists. The Match construct gives rise to nested pattern match
clauses such as the following

match a with | d -> match e with | f -> g + h | i -> j + k

The longest match attributes disambiguates such nested lists by associating trail-
ing cases with the nearest match statement.

Afroozeh et al. [1] showed that semantics of disambiguation in SDF2 [7,61]
was not safe. They define a safe interpretation of disambiguation rules by means
of a grammar transformation. Amorim and Visser [53] define a direct semantics
of associativity and priority rules by means of subtree exclusion including prefix
and postfix operators, mixfix productions, and indirect recursion. They show that
the semantics is safe and complete for safe and complete sets of disambiguation
rules for expression grammars without overlap. They also discuss the influence
of overlap on disambiguation of expression grammars. For example, in Fig. 1,
the productions Min, Sub, and App have overlap. The expression x - y can be
parsed as App(Var("x"), Min(Var("y"))) or as Sub(Var("x"), Var("y")). This is
not an ambiguity that can be solved by means of safe associativity and priority
rules. The indexed priority rule Exp.App <1> .> Exp.Min solves this ambiguity
by forbidding the occurrence of Min as second argument of App. (The index is 0
based.)

Amorim et al. show that deep conflicts are not only an artifact of grammars,
but do actually occur in the wild, i.e. that they do occur in real programs [52].
One possible implementation of disambiguation with deep conflicts is by means
of data dependent parsers. Amorim et al. show that such parsers can have near
zero overhead when compared to disambiguation by grammar rewriting [55].

Parenthesization. In the previous section we saw that parentheses, i.e. pro-
ductions annotated with the bracket attribute, are omitted when transforming a

8 L. E. de Souza Amorim and E. Visser

concrete syntax tree to an abstract syntax tree (Fig. 3). Furthermore, by using
declarative disambiguation, the typing scheme for abstract syntax trees allows
arbitrary combinations of constructors in well-formed abstract syntax trees. This
is convenient, since it allows transformations on trees to create new trees without
regard for disambiguation rules. Before formatting such trees (Sect. 5), paren-
theses need to be inserted in order to prevent creating a sentence that has a
different (abstract) syntax tree when parsed. That is, we want the equation
parse(format(t)) = t to hold for any well-formed abstract syntax tree.

The advantage of declarative disambiguation rules is that they can be inter-
preted not only to define disambiguation during parsing, but can also be inter-
preted to detect trees that need disambiguation. For example, without parenthe-
sization the tree Add(Eq(Var("a"), Var("b")), Var("c")) would be formatted as
a == b + c, which would be parsed as Add(Var("a"), Eq(Var("b"), Var("c"))).
Parenthesization recognizes that the first tree has a priority conflict between
Add and Eq and inserts parentheses around the equality expression, such that
the tree is formatted as (a == b) + c, which has the original tree as its abstract
syntax tree. The implementation of SDF3 in Spoofax supports parenthesization
following the disambiguation semantics of Amorim and Visser [53].

4 Lexical Syntax

The lexical syntax of a language concerns the lexemes, words, or tokens of the
language and typically includes identifiers, numbers, strings, keywords, oper-
ators, and delimiters. In traditional parsers and parser generators, parsing is
divided into a lexical analysis (or scanning) phase in which the characters of a
program are merged into tokens, and a context-free analysis phase in which a
stream of tokens is parsed into phrase structure. Inspired by Salomon and Cor-
mack [45], SDF2 adopted character-level grammars using the single formalism
of context-free productions to define lexical and context-free syntax, supported
by scannerless parsing [60]. SDF3 has inherited this feature.

Character-Level Grammars. In character-level grammars, the terminals of
the grammar are individual characters. In SDF3, characters are indicated by
means of character classes. For example, the definition of identifiers uses the
character class [a-zA-Z0-9] comprising of lower and upper case letters and
digits. Tokens are defined using the same productions that we use for context-
free phrase structure, except that it is not required to associate a constructor
with a lexical production. For example, the syntax of identifiers is defined using
the production ID = [a-zA-Z] [a-zA-Z0-9]*, i.e. an identifier starts with a letter,
which is followed by zero or more letters or digits. In a production such as
Exp.Let = "let" Bind* "in" Exp it appears that "let" and "in" are terminals.
However, SDF3 defines such literals by means of a lexical production in which
the literal acts as a sort, which is defined in terms of character classes. Thus,
the use of the literal "let" implies a production "let" = [l] [e] [t]. SDF3
also supports case-insensitive literals; in this case, the literal ’let’ implies a
production ’let’ = [lL] [eE] [tT].

Multi-purpose Syntax Definition with SDF3 9

Lexical Disambiguation. Just as phrase structure, lexical syntax may be
ambiguous, requiring lexical disambiguation. The root cause of lexical ambiguity
is overlap between lexical categories. For example, an identifier ab overlaps with
the prefix of a longer identifier abc and let may be an identifier or a keyword.
The two common lexical disambiguation policies are (1) prefer longest match,
and (2) prefer one category over another. In scanner specification languages such
as LEX [43] these policies are realized by (1) preferring the longest match and
by (2) ordering the definitions of lexical rules and selecting the first rule that
applies. This works well when recognizing tokens independent of the context in
which they appear.

In a character-level grammar that approach does not work, since tokenization
may depend on the phrase structure context (see also the discussion on language
composition below), and due to modularity of a syntax definition, there is no
canonical order of lexical rules. Thus, lexical disambiguation is defined anal-
ogously to subtree exclusion for phrase structure in the previous section, by
defining what is not allowed using follow restrictions and reject productions. We
discuss an example of each. The expression ab can be a single identifier or the
application of a to b, i.e. App(Var("a"),Var("b")). This ambiguity is solved by
means of the follow restriction ID -/- [a-zA-Z0-9] which states that an identi-
fier cannot be followed directly by a letter or digit. The expression if x then y

can be an if-then expression, i.e., IfT(Var("x"), Var("y")), or it can be the
application of the variable if to some other variables, i.e.,

App(App(App(Var("if"), Var("x")), Var("then")), Var("y"))

This ambiguity is solved by means of reject productions ID = "if" {reject}

and ID = "else" {reject} to forbid the use of the keywords if and else as
identifiers.

Layout. Another aspect of lexical syntax is the whitespace characters and com-
ments that can appear between tokens, which are known as ‘layout’ in SDF.
The definition of layout is a matter of lexical definition as that of any other
lexical category. Module lex in Fig. 1 defines layout as whitespace, multi-line
comments (delimited by /* and */), and single-line comments (starting with
//). The multi-line comments can be nested to enable commenting out code
with comments. This is not supported by scanner generators based on regular
expressions. Note the use of follow restrictions to ensure that an asterisk within
a multi-line comment is not followed by a slash (which should be parsed as the
end of the comment), and to characterize end-of-file as the empty string that is
not followed by any character (which is in turn defined as the complement of the
empty character class).

What is special about layout is that it can appear between any two ordinary
tokens. In a scanner-based approach layout tokens are just skipped by the scan-
ner, leaving only tokens that matter for the parser. A character-level grammar
needs to be explicit about where layout can appear. This would result in boiler-
plate code as illustrated by the following explicit version of the Fun production:

10 L. E. de Souza Amorim and E. Visser

syntax

Exp-CF.Var = ID-CF

Exp-CF.Add = Exp-CF LAYOUT?-CF "+" LAYOUT?-CF Exp-CF {left}

ID-CF = ID-LEX

ID-LEX = [\65-\90\97-\122] [\48-\57\65-\90\97-\122]*-LEX

"+" = [\43]

LAYOUT?-CF =

LAYOUT?-CF = LAYOUT-CF

LAYOUT-CF = LAYOUT-CF LAYOUT-CF {left}

LAYOUT-CF = LAYOUT-LEX

LAYOUT-LEX = [\9-\10\13\32]

restrictions

LAYOUT?-CF -/- [\9-\10\13\32]

ID-LEX -/- [\48-\57\65-\90\97-\122]

Fig. 5. Normalized syntax and restrictions for a selection of productions from Fig. 1.

Exp.Fun = "fun" LAYOUT? ID* LAYOUT? "->" LAYOUT? Exp

To avoid such boilerplate, the SDF3 compiler applies a transformation to pro-
ductions in context-free syntax sections in order to inject optional layout [61].
Figure 5 shows the result of that normalization to a small selection of produc-
tions from Fig. 1. Note that in lexical productions (such as for ID-LEX) no layout
is injected, since the characters of tokens should not be separated by layout. Note
the use of -LEX and -CF suffixes on sorts to distinguish lexical sorts from context-
free sorts (This transformation is currently applied to the entire grammar, which
may hinder grammar composition between modules specifying different layout.)

Layout Sensitive Syntax. In Sect. 3 we showed how associativity and priority
rules can be used to disambiguate an ambiguous grammar. For example, we saw
how longest match for Match ensures that a match case is always associated with
the nearest match. Similarly, Fig. 1 disambiguates the dangling-else ambiguity
between IfT and IfE such that an else branch is always associated with the
closest if.

An alternative approach to disambiguation is to take into account the layout
of a program. For that purpose, SDF3 supports the use of layout constraints,
which pose requirements on the two dimensional shape of programs [17,54]. We
illustrate layout constraints with layout-sensitive disambiguations of the Match
and IfE productions in Figs. 6 and 7.

The layout constraints in Fig. 6 require that the if and else keywords of
the IfE production are aligned. The examples in the figure show how the else
branch can be associated with either if by choosing the layout. In addition, the
indent constraints require that the conditions and branches of the IfT and IfE
constructs appear to the right of the if and else keywords. Figure 7 disam-
biguates the association of the match cases with a match by requiring that the

Multi-purpose Syntax Definition with SDF3 11

Exp.IfE = "if" exp1:Exp "then" exp2:Exp "else" exp3:Exp {

layout(align "if" "else" && indent "if" "then"

&& indent "if" exp1 && indent "if" exp2 && indent "else" exp3)

}

Exp.IfT = "if" exp1:Exp "then" exp2:Exp {

layout(indent "if" "then" && indent "if" exp1 && indent "if" exp2)

}

if a then

if b then

c

else

d

IfT(

Var("a")

, IfE(Var("b"), Var("c"), Var("d"))

)

if a then

if b then

c

else

d

IfE(

Var("a")

, IfT(Var("b"), Var("c"))

, Var("d")

)

Fig. 6. Layout-sensitive disambiguation of dangling-else.

Exp.Match = "match" Exp "with" cases:Case+ {

layout(indent "match" "with" && indent "match" exp

&& align-list cases)

}

match a

with | d -> match e

with | f -> g

| i -> j

Match(

Var("a")

, [Case(

PVar("d")

, Match(

Var("e")

, [Case(PVar("f"),Var("g"))

, Case(PVar("i"),Var("j"))

]

)

)

]

)

match a

with | d -> match e

with | f -> g

| i -> j

Match(

Var("a")

, [Case(

PVar("d")

, Match(

Var("e")

, [Case(PVar("f"),Var("g"))]

)

)

, Case(PVar("i"),Var("j"))

]

)

Fig. 7. Layout-sensitive disambiguation of longest match for nested match cases.

12 L. E. de Souza Amorim and E. Visser

Fig. 8. Syntax-aware editor for the fun-query language with syntax highlighting, parse
error recovery, error highlighting, and syntactic completion.

cases are aligned. Thus, one can obtain the non-longest match (second example)
without using parentheses.

Syntax Highlighting. The Spoofax language workbench [38,64] generates a
syntax-aware editor from a syntax definition. Based on the lexical syntax, it
derives syntax highlighting for programs by assigning colors to the tokens in the
syntax tree as illustrated in Fig. 8. The default coloring scheme assigns colors
to lexical categories such as keywords, identifiers, numbers, and strings. The
coloring scheme can be adjusted in a configuration file by associating colors with
sorts and constructors.

Language Composition. SDF3 supports a simple module mechanism, allow-
ing large syntax definitions to be divided into a collection of smaller modules,
and allowing to define a library with reusable definitions. For example, the lex
module provides a collection of common lexical syntax definitions. A module
may extend the definition of syntactic categories of another module. This can be
used, for example, to organize the syntax definition for a language as a collec-
tion of components (such as variables, functions, booleans, numbers) that each
introduce constructs for a common set of syntactic categories (such as types and
expressions).

Another application of the module mechanism is to compose the syntax def-
initions of different languages into a composite language. For example, Fig. 9
defines a tiny query language in module query and its composition with the
fun language of Fig. 1. The composition introduces the use of a query as an
expression, and a quoted expression as a query identifier. The languages have a
different lexical syntax, i.e. the keywords of the fun language are not reserved in
the query language, and vice versa. Thus, from can be used as a variable in a fun
expression, while it is a keyword in a query (see Fig. 8). Language composition
with SDF2/3 has been used for the embedding of domain-specific languages [12],
for the embedding of query and scripting languages [9], and for the organization
of composite languages such as AspectJ [11] and WebDSL [27,62].

A consequence of merging of productions for sorts with the same name and
injecting layout between symbols of a production, is that the layout of com-

Multi-purpose Syntax Definition with SDF3 13

module query

sorts Query lexical sorts QID

lexical syntax

QID = [a-zA-Z0-9]+

lexical restrictions

QID -/- [a-zA-Z0-9]

context-free syntax

Query.Select = <

select <QID*> from <QID*> where <Cond>

>

Cond.Eq = <<QID> == <QID>>

template options

QID = keyword {reject}

keyword -/- [a-zA-Z0-9]

module fun-query

imports fun query

context-free syntax

Exp.Query = Query

QID.Exp = [~[Exp]]

ID = [select] {reject}

Fig. 9. Composition of languages with different lexical syntax.

posed languages is unified. It is future work to preserve the layout of composed
languages.

5 Formatting

Formatting is the process of mapping abstract syntax trees to text. This can be
used to improve the layout of a manually written program, or it can be used
to turn a generated or transformed abstract syntax tree into a program text.
Formatting is preceded by parenthesization to correctly insert parentheses such
that parsing the formatted text preserves the tree structure (see Sect. 3).

Template Productions. Formatting comes in two levels. The basic level of for-
matting, also known as ugly-printing, is concerned with inserting the ‘irrelevant’
notational details that were removed in the translation to abstract syntax. After
ugly-printing, parsing the generated text should produce the original abstract
syntax tree. This translation can be obtained from a grammar mechanically. For
example, the Stratego/XT transformation tool suite featured a ‘pretty-print’
table generator [35] that formalized for each constructor a mapping to these
notational details.

The second level of formatting, also known as pretty-printing, is concerned
with producing white space to make the generated program text readable. The
Box language [8,34] provides abstractions for horizontal and vertical composi-
tion and horizontal (e.g. indentation) and vertical (line breaks) spacing. This
is a useful intermediate representation for formatting, which allows the pretty-
printer writer to abstract from an actual pretty-print algorithm. (Libraries for
pretty-printing are built on the same principle [29].) Still, a mapping from
abstract syntax trees to Box expressions requires human judgement and can-
not be derived mechanically from a grammar. The pretty-print table generator

14 L. E. de Souza Amorim and E. Visser

mentioned above featured heuristics for associating Box expressions with lan-
guage constructs. However, in many cases, it was necessary to edit the table to
produce useful results, creating a bidirectional update problem to reflect changes
to the grammar. SDF3 solves this problem by means of template productions,
originally motivated to support syntactic completion (see below) [63]. (Template
productions are a signature feature of SDF3, as they changed the syntax of pro-
ductions from defined non-terminal on the right in SDF and SDF2, to defined
non-terminal on the left, and the template quotes have a distinct influence on
the typography of syntax definitions.)

A regular context-free grammar production (Sect. 2) such as

Exp.IfE = "if" Exp "then" Exp "else" Exp

combines sorts and literals. Sorts are identifiers referring to other productions
and become the sub-terms of an abstract syntax tree node. Literals are quoted
strings and are removed in the mapping to abstract syntax, needing to be
restored during pretty-printing. Sorts and literals are implicitly separated by
layout as discussed in Sect. 4.

Exp.IfE = <

if <Exp> then

<Exp>

else

<Exp>

>

Fig. 10. Template pro-
duction

In a template production the usual quotation is
inverted. Consider the template version of the IfE
production in Fig. 10. The outer quotes (<if ...>),
quote a literal piece of text. The inner quotes (<Exp>)
are escapes to sorts. A template not only captures
literals and sorts, but also captures a two dimen-
sional shape. For the purposes of parsing this shape
is ignored. That is, whitespace between symbols is
turned into optional layout analogous to the trans-
formation discussed in Sect. 4. (For the purpose of
layout-sensitive parsing it would be interesting to interpret the layout in a tem-
plate as layout constraints, but it is not easy to distinguish which layout should
be enforced, and which layout is incidental.)

Exp.Let = <

let <{Bnd "\n\n"}*>

in <Exp>

>

Fig. 11. Separator layout

For the purpose of pretty-printing, the two
dimensional shape is interpreted as horizontal and
vertical composition and spacing. That is, new-
lines are interpreted as vertical space and spaces
are interpreted as indentation (with respect to the
first non-whitespace character of the template). The
template in Fig. 11 shows how the spacing of list
elements can be configured with whitespace in the
separator.

Templates are translated to a transformation from abstract syntax terms to
Box expressions. Thus, after every change to the grammar, the pretty-printer
is automatically regenerated and up-to-date, without requiring a bidirectional
update process. Plain productions with quoted literals can also be obtained
automatically from template productions.

The formatters derived from SDF3 templates have some limitations, which
are partly due to (the interpretation of) the Box intermediate representation.

Multi-purpose Syntax Definition with SDF3 15

First, formatting is fairly rigid. It does not take into account the composition and
size of expressions, but formats a language construct always in the same man-
ner. Furthermore, it is not customizable with user preferences, as is customary
in integrated development environments such as Eclipse. When formatting man-
ually written programs to improve their layout, or when formatting a program
after applying some transformation (e.g. a refactoring), it can be important to
preserve the layout (comments and/or whitespace) of the original program. De
Jonge and Visser [32] developed a layout preserving formatting algorithm with
heuristics for moving comment blocks. This algorithm is currently not integrated
in the SDF3 tool suite.

Completion. Formatting is also an issue when proposing and inserting syntac-
tic completions in an editor. The first version of Spoofax [38] featured syntactic
completion templates instructing the editor what to do on particular triggers,
which redundantly specified syntactic patterns. Vollebregt et al. [63] introduced
template productions with the goal to automatically generate completion tem-
plates and support a program completion workflow in the style of structured
editors. Amorim et al. [51] generate explicit placeholder syntax for all syntactic
sorts in order to explicitly represent incomplete programs. Syntactic completion
becomes a matter of generating completion proposals for placeholders based on
the productions of the grammar. The resulting editor behaves like a combination
of text editor and structure editor as illustrated in Fig. 8.

6 Parsing

Finally, we discuss the parsing strategy of SDF3. Character-level grammars do
not fit in restricted grammar classes such as LL or LR grammars; deciding which
alternative to take may require an unbounded number of characters of looka-
head [61]. Furthermore, only the full class of context-free grammars is closed
under composition [28], i.e. the composition of two LL or LR grammars is not
necessarily an LL or LR grammar. Thus, SDF3 uses a generalized parsing algo-
rithm that can deal with the full class of context-free grammars.

Lazy Parse Table Generation. The SDF3 compiler first transforms a mod-
ular syntax definition to a monolithic and normalized syntax definition, which
makes layout and deep priority conflicts explicit in the grammar [53,61]. A static
analysis checks whether all used sorts are defined and warns for missing asso-
ciativity and priority rules. A parser generation algorithm is used to generate a
shift/reduce parse table from the normalized grammar. The algorithm is based
on SLR parse table generation [28] adapted to deal with shallow priority con-
flicts [59]. Follow restrictions are implemented by restricting the follow set of
non-terminals in the parse table. Follow restrictions that are longer than one
character are added as dynamic checks. The resulting table may contain shift/re-
duce conflicts.

16 L. E. de Souza Amorim and E. Visser

a + b == c + d

amb([

Add(Var("a"), amb([Add(Eq(Var("b"), Var("c")), Var("d"))

, Eq(Var("b"), Add(Var("c"), Var("d")))]))

, Add(amb([Eq(Add(Var("a"), Var("b")), Var("c"))

, Add(Var("a"), Eq(Var("b"), Var("c")))]), Var("d"))

, Eq(Add(Var("a"), Var("b")), Add(Var("c"), Var("d")))

])

Fig. 12. Sentence and abstract syntax tree with (shared) ambiguities.

LR parse table generation is a non-local operation, requiring the entire gram-
mar, implying that separate compilation is not possible. If one module of the
syntax definition is changed, it needs to be recompiled entirely. This is a dis-
advantage for scenarios that depend on language extension [12,16]. Bravenboer
and Visser developed a representation and algorithm for parse table composition
that realized a form of separate compilation for syntax definitions [13]. However,
the algorithm did not support cross-module priority declarations and was not
adopted in practice. As a more pragmatic approach, Amorim et al. [52] adopted
lazy parse table generation [26], which starts with an empty parse table, and
only generates those states that are needed at parse time. This ensures fast
turnaround times during development of syntax definitions.

Scannerless Generalized LR Parsing with Error Recovery. The shift/re-
duce parse tables generated from SDF3 definitions are not deterministic, i.e. may
have shift/reduce conflicts due to proper ambiguities or unbounded lookahead.
To handle both these cases, SDF3 uses a Scannerless Generalized-LR (SGLR)
parsing algorithm [60].

The GLR algorithm handles conflicts in the parse table by forking off sepa-
rate parsers for each alternative of a conflict [44]. If the parser has encountered a
genuine ambiguity, the parallel parsers will eventually end up in the same parse
state, and the branches give rise to alternative parse trees. The result of parsing
is a parse forest, a compact representation of all possible parse trees. A language
engineer using SDF3 can inspect the ambiguities of a grammar by inspecting the
(abstract) syntax trees with ambiguities, instead of inspecting shift/reduce con-
flicts. Figure 12 shows an abstract syntax tree with ambiguities for an expression
in the example language using a syntax definition without disambiguation rules.

Another reason for shift/reduce conflicts is the limited lookahead of the
parser generator. For example, consider parsing the expression a == b /* a

comment */ + c. After reading the identifier b, the parser can reduce to create
Eq(Var("a"),Var("b")) or it can shift, expecting to eventually parse some sub-
expression of Eq, i.e. resulting in a term of the form Eq(Var("a"),?(Var("b"),

...)). This decision can only be made when parsing the + operator. But before
the parser sees that operator, it first needs to process the comment. Forking

Multi-purpose Syntax Definition with SDF3 17

module matching

language mpsd-sdf3

start symbol Exp

test match longest match [[

match a with | b -> match c with | e -> f | g -> h

]] parse to [[

match a with | b -> (match c with | e -> f | g -> h)

]]

Fig. 13. Testing longest match disambiguation of the match-with expression.

the parser allows delaying the decision. Eventually only one of the parsers will
survive and produce a tree without ambiguities.

A GLR parser becomes a scannerless parser by reading characters as tokens
and handling lexical disambiguation such that invalid forks are prevented or
killed as early as possible [60]. Follow restrictions are handled by means of a
dynamic lookahead check on reductions. Reject productions are implemented by
rejecting states that are reached with a reject production. That requires postpon-
ing the reduction from rejectable states until it is certain no reject productions
will appear.

The SGLR algorithm is extended to support parse error recovery and pro-
duce a parse tree even if a program text contains syntactic errors [30,33,36]. This
is important in interactive settings such as editors in an integrated development
environment in order to enable editor services such as syntax highlighting and
type analysis for programs with errors, as arise during program development.
Error recovery is realized by an extension of SDF3 with recovery productions,
which are only used in case normal parsing fails. There are two main categories of
recovery rules. Inspired by island grammars [31], so called water productions turn
normal tokens into layout, which allows skipping some tokens when they cannot
be parsed otherwise. Productions such as ")" = {recover} allow the insertion of
missing literals (or complete sorts). The SDF3 normalizer automatically gener-
ates a permissive grammar with recovery rules, but such rules can also be added
manually. Error recovery is the basis for reporting syntax errors. Improving the
localization and explanation of error messages is a topic for future work.

An extension of SGLR to support incremental parsing based on the work of
Wagner et al. [65] is under development [49].

Testing. Testing SDF3 syntax definitions is supported by the Spoofax Testing
(SPT) language, a domain-specific language for testing various aspects of lan-
guage definitions, including parsing [37]. An SPT test quotes a language fragment
and specifies a test expectation. For testing syntax, the expectations are parse
succeeds, parse fails, and parse to a specific term structure. Figure 13 illus-
trates the testing of disambiguation in SPT by specifying the disambiguated
expression as parse result.

18 L. E. de Souza Amorim and E. Visser

7 Related Work

We have referred to previous and related work throughout this paper. The papers
that we cited about particular aspects of SDF3 provide extensive discussions of
related technical work, which is beyond the scope of this paper. Here we provide
a couple of high-level pointers to related efforts.

The design and implementation of SDF3 is motivated by its use in the
Spoofax language workbench [38,64]. Erdweg et al. [18,19] give an overview
of general concerns of the design and implementation of language workbenches.

SDF3 is bootstrapped, i.e. the syntax of SDF3 has been defined in SDF3.
Other significant applications of SDF3 are the NaBL2 [2] and Statix [3] languages
for type system specification, the IceDust language for data modeling [20–22],
and the FlowSpec language for data-flow analysis specification [50]. Many lan-
guages originally developed with SDF2 are being ported to SDF3, including the
Stratego transformation language [10].

Several syntax definition languages share aims with SDF3, in particular
regarding the support for language composition. The syntax definition sub-
language of the RASCAL meta-programming language [41] has a common root in
SDF2. RASCAL has adopted generalized GLL parsing [48] instead of GLR pars-
ing. The syntax definition language of the Silver [66] attribute grammar system
takes a different approach to language composition. Instead of relying on scan-
nerless generalized parsing, it relies on context-aware scanners and restrictions
on grammars in order to guarantee absence of ambiguities in composed gram-
mars [46]. Based on these restrictions it can support parse table composition
for language composition [47]. The Eco editor [15] supports language composi-
tion using language boxes, where the editor keeps track of transitions between
languages, avoiding the composition of grammars.

8 Conclusion

In this paper we have presented SDF3, a mature language for the definition of
syntax. The design and implementation of SDF3 are based on many years of
research and engineering, fed by the experience of numerous researchers, devel-
opers, and students. The multi-purpose interpretation of SDF3 specifications
allows quick prototopying of language designs and enables testing these designs
in a full-fledged environment with a syntax aware editor.

Acknowledgment. We would like to thank our numerous co-authors (see the Refer-
ences section) for their contributions to the SDF family of languages. We would like to
thank Peter Mosses for comments on this paper.

References

1. Afroozeh, A., van den Brand, M., Johnstone, A., Scott, E., Vinju, J.: Safe specifi-
cation of operator precedence rules. In: Erwig, M., Paige, R.F., Van Wyk, E. (eds.)
SLE 2013. LNCS, vol. 8225, pp. 137–156. Springer, Cham (2013). https://doi.org/
10.1007/978-3-319-02654-1 8

https://doi.org/10.1007/978-3-319-02654-1_8
https://doi.org/10.1007/978-3-319-02654-1_8

Multi-purpose Syntax Definition with SDF3 19

2. van Antwerpen, H., Néron, P., Tolmach, A.P., Visser, E., Wachsmuth, G.: A con-
straint language for static semantic analysis based on scope graphs. In: Erwig, M.,
Rompf, T. (eds.) Proceedings of the 2016 ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation, PEPM 2016, St. Petersburg, FL, USA,
January 20–22, 2016, pp. 49–60. ACM (2016). https://doi.org/10.1145/2847538.
2847543

3. van Antwerpen, H., Poulsen, C.B., Rouvoet, A., Visser, E.: Scopes as types. Proc.
ACM Program. Lang. 2(OOPSLA), 1–30 (2018). https://doi.org/10.1145/3276484

4. Backus, J.W.: The syntax and semantics of the proposed international algebraic
language of the Zurich ACM-GAMM conference. In: IFIP Congress. pp. 125–131
(1959)

5. van den Brand, M.G.J., et al.: The ASF+SDF meta-environment: a component-
based language development environment. In: Wilhelm, R. (ed.) Compiler Con-
struction, 10th International Conference, CC 2001 Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2001 Genova, Italy,
April 2–6, 2001, Proceedings. Lecture Notes in Computer Science, vol. 2027, pp.
365–370. Springer (2001). https://doi.org/10.1016/S1571-0661(04)80917-4

6. van den Brand, M.G.J., de Jong, H.A., Klint, P., Olivier, P.A.: Efficient annotated
terms. Softw.: Pract. Exp. 30(3), 259–291 (2000)

7. van den Brand, M.G.J., Scheerder, J., Vinju, J.J., Visser, E.: Disambiguation filters
for scannerless generalized LR parsers. In: Horspool, R.N. (ed.) CC 2002. LNCS,
vol. 2304, pp. 143–158. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45937-5 12

8. van den Brand, M.G.J., Visser, E.: Generation of formatters for context-free lan-
guages. ACM Trans. Softw. Eng. Methodol. 5(1), 1–41 (1996). https://doi.org/10.
1145/226155.226156

9. Bravenboer, M., Dolstra, E., Visser, E.: Preventing injection attacks with syntax
embeddings. Sci. Comput. Program. 75(7), 473–495 (2010). https://doi.org/10.
1016/j.scico.2009.05.004

10. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. A
language and toolset for program transformation. Sci. Comput. Program. 72(12),
52–70 (2008). https://doi.org/10.1016/j.scico.2007.11.003

11. Bravenboer, M., Tanter, É., Visser, E.: Declarative, formal, and extensible syntax
definition for AspectJ. In: Tarr, P.L., Cook, W.R. (eds.) Proceedings of the 21th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2006, pp. 209–228. ACM (2006). https://
doi.org/10.1145/1167473.1167491

12. Bravenboer, M., Visser, E.: Concrete syntax for objects: domain-specific language
embedding and assimilation without restrictions. In: Vlissides, J.M., Schmidt, D.C.
(eds.) Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2004,
pp. 365–383. ACM, Vancouver (2004). https://doi.org/10.1145/1028976.1029007

13. Bravenboer, M., Visser, E.: Parse table composition. In: Gašević, D., Lämmel, R.,
Van Wyk, E. (eds.) SLE 2008. LNCS, vol. 5452, pp. 74–94. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00434-6 6

14. Chomsky, N.: Three models for the description of language. IRE Trans. Inf. Theory
2(3), 113–124 (1956). https://doi.org/10.1109/TIT.1956.1056813

15. Diekmann, L., Tratt, L.: Eco: a language composition editor. In: Combemale, B.,
Pearce, D.J., Barais, O., Vinju, J.J. (eds.) SLE 2014. LNCS, vol. 8706, pp. 82–101.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11245-9 5

https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1145/3276484
https://doi.org/10.1016/S1571-0661(04)80917-4
https://doi.org/10.1007/3-540-45937-5_12
https://doi.org/10.1007/3-540-45937-5_12
https://doi.org/10.1145/226155.226156
https://doi.org/10.1145/226155.226156
https://doi.org/10.1016/j.scico.2009.05.004
https://doi.org/10.1016/j.scico.2009.05.004
https://doi.org/10.1016/j.scico.2007.11.003
https://doi.org/10.1145/1167473.1167491
https://doi.org/10.1145/1167473.1167491
https://doi.org/10.1145/1028976.1029007
https://doi.org/10.1007/978-3-642-00434-6_6
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1007/978-3-319-11245-9_5

20 L. E. de Souza Amorim and E. Visser

16. Erdweg, S., Rendel, T., Kästner, C., Ostermann, K.: Sugarj: library-based syntactic
language extensibility. In: Lopes, C.V., Fisher, K. (eds.) Proceedings of the 26th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2011, part of SPLASH 2011, Portland,
OR, USA, October 22–27, 2011, pp. 391–406. ACM (2011). https://doi.org/10.
1145/2048066.2048099

17. Erdweg, S., Rendel, T., Kästner, C., Ostermann, K.: Layout-sensitive generalized
parsing. In: Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745, pp. 244–
263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36089-3 14

18. Erdweg, S., et al.: The state of the art in language workbenches. In: Erwig, M.,
Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp. 197–217. Springer,
Cham (2013). https://doi.org/10.1007/978-3-319-02654-1 11

19. Erdweg, S., et al.: Evaluating and comparing language workbenches: existing
results and benchmarks for the future. Comput. Lang. Syst. Struct. 44, 24–47
(2015). https://doi.org/10.1016/j.cl.2015.08.007

20. Harkes, D., Groenewegen, D.M., Visser, E.: IceDust: incremental and eventual
computation of derived values in persistent object graphs. In: Krishnamurthi, S.,
Lerner, B.S. (eds.) 30th European Conference on Object-Oriented Programming,
ECOOP 2016, July 18–22, 2016, Rome, Italy. LIPIcs, vol. 56. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2016). https://doi.org/10.4230/LIPIcs.ECOOP.
2016.11

21. Harkes, D., Visser, E.: Unifying and generalizing relations in role-based data mod-
eling and navigation. In: Combemale, B., Pearce, D.J., Barais, O., Vinju, J.J. (eds.)
SLE 2014. LNCS, vol. 8706, pp. 241–260. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-11245-9 14

22. Harkes, D., Visser, E.: IceDust 2: derived bidirectional relations and calculation
strategy composition. In: Müller, P. (ed.) 31st European Conference on Object-
Oriented Programming, ECOOP 2017, June 19–23, 2017, Barcelona, Spain. LIPIcs,
vol. 74. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017). https://doi.
org/10.4230/LIPIcs.ECOOP.2017.14

23. Heering, J., Hendriks, P.R.H., Klint, P., Rekers, J.: The syntax definition formalism
SDF - reference manual. SIGPLAN Not. 24(11), 43–75 (1989). https://doi.org/10.
1145/71605.71607

24. Heering, J., Klint, P., Rekers, J.: Incremental generation of parsers. IEEE Trans.
Softw. Eng. 16(12), 1344–1351 (1990)

25. Heering, J., Klint, P., Rekers, J.: Incremental generation of lexical scanners.
ACM Trans. Program. Lang. Syst. 14(4), 490–520 (1992). https://doi.org/10.1145/
133233.133240

26. Heering, J., Klint, P., Rekers, J.: Lazy and incremental program generation. ACM
Trans. Program. Lang. Syst. 16(3), 1010–1023 (1994). https://doi.org/10.1145/
177492.177750

27. Hemel, Z., Groenewegen, D.M., Kats, L.C.L., Visser, E.: Static consistency check-
ing of web applications with WebDSL. J. Symb. Comput. 46(2), 150–182 (2011).
https://doi.org/10.1016/j.jsc.2010.08.006

28. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 3rd edn. Addison-Wesley, Boston (2006)

29. Hughes, J.: The design of a pretty-printing library. In: Jeuring, J., Meijer, E. (eds.)
AFP 1995. LNCS, vol. 925, pp. 53–96. Springer, Heidelberg (1995). https://doi.
org/10.1007/3-540-59451-5 3

https://doi.org/10.1145/2048066.2048099
https://doi.org/10.1145/2048066.2048099
https://doi.org/10.1007/978-3-642-36089-3_14
https://doi.org/10.1007/978-3-319-02654-1_11
https://doi.org/10.1016/j.cl.2015.08.007
https://doi.org/10.4230/LIPIcs.ECOOP.2016.11
https://doi.org/10.4230/LIPIcs.ECOOP.2016.11
https://doi.org/10.1007/978-3-319-11245-9_14
https://doi.org/10.1007/978-3-319-11245-9_14
https://doi.org/10.4230/LIPIcs.ECOOP.2017.14
https://doi.org/10.4230/LIPIcs.ECOOP.2017.14
https://doi.org/10.1145/71605.71607
https://doi.org/10.1145/71605.71607
https://doi.org/10.1145/133233.133240
https://doi.org/10.1145/133233.133240
https://doi.org/10.1145/177492.177750
https://doi.org/10.1145/177492.177750
https://doi.org/10.1016/j.jsc.2010.08.006
https://doi.org/10.1007/3-540-59451-5_3
https://doi.org/10.1007/3-540-59451-5_3

Multi-purpose Syntax Definition with SDF3 21

30. de Jonge, M., Kats, L.C.L., Visser, E., Söderberg, E.: Natural and flexible error
recovery for generated modular language environments. ACM Trans. Program.
Lang. Syst. 34(4), 15 (2012). https://doi.org/10.1145/2400676.2400678

31. de Jonge, M., Nilsson-Nyman, E., Kats, L.C.L., Visser, E.: Natural and flexible
error recovery for generated parsers. In: van den Brand, M., Gašević, D., Gray,
J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 204–223. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-12107-4 16

32. de Jonge, M., Visser, E.: An algorithm for layout preservation in refactoring trans-
formations. In: Sloane, A., Aßmann, U. (eds.) SLE 2011. LNCS, vol. 6940, pp.
40–59. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28830-2 3

33. de Jonge, M., Visser, E.: Automated evaluation of syntax error recovery. In:
Goedicke, M., Menzies, T., Saeki, M. (eds.) IEEE/ACM International Conference
on Automated Software Engineering, ASE 2012, Essen, Germany, September 3–7,
2012, pp. 322–325. ACM (2012). https://doi.org/10.1145/2351676.2351736

34. de Jonge, M.: A pretty-printer for every occasion. In: The International Symposium
on Constructing Software Engineering Tools (CoSET2000). University of Wollon-
gong, Australia (2000)

35. de Jonge, M.: Pretty-printing for software reengineering. In: 18th International
Conference on Software Maintenance (ICSM 2002), Maintaining Distributed Het-
erogeneous Systems, 3–6 October, 2002, Montreal, Quebec, Canada, pp. 550–559.
IEEE Computer Society (2002)

36. Kats, L.C.L., de Jonge, M., Nilsson-Nyman, E., Visser, E.: Providing rapid feed-
back in generated modular language environments: adding error recovery to scan-
nerless generalized-LR parsing. In: Arora, S., Leavens, G.T. (eds.) Proceedings of
the 24th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2009, pp. 445–464. ACM (2009).
https://doi.org/10.1145/1640089.1640122

37. Kats, L.C.L., Vermaas, R., Visser, E.: Integrated language definition testing:
enabling test-driven language development. In: Lopes, C.V., Fisher, K. (eds.)
Proceedings of the 26th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2011, Part of
SPLASH 2011, Portland, OR, USA, October 22–27, 2011, pp. 139–154. ACM
(2011). https://doi.org/10.1145/2048066.2048080

38. Kats, L.C.L., Visser, E.: The Spoofax language workbench: rules for declarative
specification of languages and IDEs. In: Cook, W.R., Clarke, S., Rinard, M.C. (eds.)
Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2010, pp. 444–463.
ACM, Reno/Tahoe (2010). https://doi.org/10.1145/1869459.1869497

39. Kats, L.C.L., Visser, E., Wachsmuth, G.: Pure and declarative syntax definition:
paradise lost and regained. In: Cook, W.R., Clarke, S., Rinard, M.C. (eds.) Pro-
ceedings of the 25th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA 2010, pp. 918–932.
ACM, Reno/Tahoe (2010). https://doi.org/10.1145/1869459.1869535

40. Klint, P.: A meta-environment for generating programming environments. ACM
Trans. Softw. Eng. Methodol. 2(2), 176–201 (1993). https://doi.org/10.1145/
151257.151260

41. Klint, P., van der Storm, T., Vinju, J.J.: RASCAL: a domain specific language
for source code analysis and manipulation. In: Ninth IEEE International Working
Conference on Source Code Analysis and Manipulation, SCAM 2009, Edmonton,
Alberta, Canada, September 20–21, 2009, pp. 168–177. IEEE Computer Society
(2009). https://doi.org/10.1109/SCAM.2009.28

https://doi.org/10.1145/2400676.2400678
https://doi.org/10.1007/978-3-642-12107-4_16
https://doi.org/10.1007/978-3-642-28830-2_3
https://doi.org/10.1145/2351676.2351736
https://doi.org/10.1145/1640089.1640122
https://doi.org/10.1145/2048066.2048080
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/1869459.1869535
https://doi.org/10.1145/151257.151260
https://doi.org/10.1145/151257.151260
https://doi.org/10.1109/SCAM.2009.28

22 L. E. de Souza Amorim and E. Visser

42. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml
system release 4.10 (2020)

43. Lesk, M.E.: Lex–a lexical analyzer generator. Tech. rep. CS-39. AT&T Bell Labo-
ratories, Murray Hill, N.J. (1975)

44. Rekers, J.: Parser generation for interactive environments. Ph.D. thesis, University
of Amsterdam, Amsterdam, The Netherlands (January 1992)

45. Salomon, D.J., Cormack, G.V.: Scannerless NSLR(1) parsing of programming lan-
guages. In: PLDI, pp. 170–178 (1989)

46. Schwerdfeger, A., Wyk, E.V.: Verifiable composition of deterministic grammars. In:
Hind, M., Diwan, A. (eds.) Proceedings of the 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2009, Dublin, Ireland,
June 15–21, 2009, pp. 199–210. ACM (2009). https://doi.org/10.1145/1542476.
1542499

47. Schwerdfeger, A., Van Wyk, E.: Verifiable parse table composition for deterministic
parsing. In: van den Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS,
vol. 5969, pp. 184–203. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-12107-4 15

48. Scott, E., Johnstone, A.: GLL parsing. Electron. Notes Theor. Comput. Sci.
253(7), 177–189 (2010). https://doi.org/10.1016/j.entcs.2010.08.041

49. Sijm, M.P.: Incremental scannerless generalized LR parsing. In: Smaragdakis, Y.
(ed.) Proceedings Companion of the 2019 ACM SIGPLAN International Confer-
ence on Systems, Programming, Languages, and Applications: Software for Human-
ity, SPLASH 2019, Athens, Greece, October 20–25, 2019, pp. 54–56. ACM (2019).
https://doi.org/10.1145/3359061.3361085

50. Smits, J., Visser, E.: FlowSpec: declarative dataflow analysis specification. In:
Combemale, B., Mernik, M., Rumpe, B. (eds.) Proceedings of the 10th ACM SIG-
PLAN International Conference on Software Language Engineering, SLE 2017,
Vancouver, BC, Canada, October 23–24, 2017, pp. 221–231. ACM (2017). https://
doi.org/10.1145/3136014.3136029

51. de Souza Amorim, L.E., Erdweg, S., Wachsmuth, G., Visser, E.: Principled syntac-
tic code completion using placeholders. In: van der Storm, T., Balland, E., Varró, D.
(eds.) Proceedings of the 2016 ACM SIGPLAN International Conference on Soft-
ware Language Engineering, Amsterdam, The Netherlands, October 31–November
1, 2016, pp. 163–175. ACM (2016). https://doi.org/10.1145/2997364.2997374

52. de Souza Amorim, L.E., Steindorfer, M.J., Visser, E.: Deep priority conflicts in the
wild: a pilot study. In: Combemale, B., Mernik, M., Rumpe, B. (eds.) Proceed-
ings of the 10th ACM SIGPLAN International Conference on Software Language
Engineering, SLE 2017, Vancouver, BC, Canada, October 23–24, 2017, pp. 55–66.
ACM (2017). https://doi.org/10.1145/3136014.3136020

53. de Souza Amorim, L.E., Visser, E.: A direct semantics of declarative disambigua-
tion rules. In: ACM TOPLAS (2020). under revision

54. de Souza Amorim, L.E., Steindorfer, M.J., Erdweg, S., Visser, E.: Declarative spec-
ification of indentation rules: a tooling perspective on parsing and pretty-printing
layout-sensitive languages. In: 0005, D.P., Mayerhofer, T., Steimann, F. (eds.) Pro-
ceedings of the 11th ACM SIGPLAN International Conference on Software Lan-
guage Engineering, SLE 2018, Boston, MA, USA, November 05–06, 2018, pp. 3–15.
ACM (2018). https://doi.org/10.1145/3276604.3276607

55. de Souza Amorim, L.E., Steindorfer, M.J., Visser, E.: Towards zero-overhead dis-
ambiguation of deep priority conflicts. Programming Journal 2(3), 13 (2018).
https://doi.org/10.22152/programming-journal.org/2018/2/13

https://doi.org/10.1145/1542476.1542499
https://doi.org/10.1145/1542476.1542499
https://doi.org/10.1007/978-3-642-12107-4_15
https://doi.org/10.1007/978-3-642-12107-4_15
https://doi.org/10.1016/j.entcs.2010.08.041
https://doi.org/10.1145/3359061.3361085
https://doi.org/10.1145/3136014.3136029
https://doi.org/10.1145/3136014.3136029
https://doi.org/10.1145/2997364.2997374
https://doi.org/10.1145/3136014.3136020
https://doi.org/10.1145/3276604.3276607
https://doi.org/10.22152/programming-journal.org/2018/2/13

Multi-purpose Syntax Definition with SDF3 23

56. Tomita, M.: An efficient context-free parsing algorithm for natural languages. In:
IJCAI, pp. 756–764 (1985)

57. Vergu, V.A., Néron, P., Visser, E.: DynSem: a DSL for dynamic semantics specifi-
cation. In: Fernández, M. (ed.) 26th International Conference on Rewriting Tech-
niques and Applications, RTA 2015, June 29 to July 1, 2015, Warsaw, Poland.
LIPIcs, vol. 36, pp. 365–378. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2015). https://doi.org/10.4230/LIPIcs.RTA.2015.365

58. Visser, E.: A family of syntax definition formalisms. In: van den Brand, M.G.J.,
Estrela, V.V. (eds.) ASF+SDF 1995. A Workshop on Generating Tools from Alge-
braic Specifications. Technical report P9504, Programming Research Group, Uni-
versity of Amsterdam (May 1995)

59. Visser, E.: A case study in optimizing parsing schemata by disambiguation filters.
In: International Workshop on Parsing Technology (IWPT 1997), pp. 210–224.
Massachusetts Institute of Technology, Boston (September 1997)

60. Visser, E.: Scannerless generalized-LR parsing. Tech. rep. P9707, Programming
Research Group, University of Amsterdam (July 1997)

61. Visser, E.: Syntax definition for language prototyping. Ph.D. thesis, University of
Amsterdam (September 1997)

62. Visser, E.: WebDSL: a case study in domain-specific language engineering. In:
Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp. 291–
373. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88643-3 7

63. Vollebregt, T., Kats, L.C.L., Visser, E.: Declarative specification of template-based
textual editors. In: Sloane, A., Andova, S. (eds.) International Workshop on Lan-
guage Descriptions, Tools, and Applications, LDTA 2012, Tallinn, Estonia, March
31–April 1, 2012, pp. 1–7. ACM (2012). https://doi.org/10.1145/2427048.2427056

64. Wachsmuth, G., Konat, G., Visser, E.: Language design with the Spoofax language
workbench. IEEE Softw. 31(5), 35–43 (2014). https://doi.org/10.1109/MS.2014.
100

65. Wagner, T.A., Graham, S.L.: Efficient and flexible incremental parsing. ACM
Trans. Program. Lang. Syst. 20(5), 980–1013 (1998). https://doi.org/10.1145/
293677.293678

66. Wyk, E.V., Bodin, D., Gao, J., Krishnan, L.: Silver: an extensible attribute gram-
mar system. Sci. Comput. Program. 75(1–2), 39–54 (2010). https://doi.org/10.
1016/j.scico.2009.07.004

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons licence and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.4230/LIPIcs.RTA.2015.365
https://doi.org/10.1007/978-3-540-88643-3_7
https://doi.org/10.1145/2427048.2427056
https://doi.org/10.1109/MS.2014.100
https://doi.org/10.1109/MS.2014.100
https://doi.org/10.1145/293677.293678
https://doi.org/10.1145/293677.293678
https://doi.org/10.1016/j.scico.2009.07.004
https://doi.org/10.1016/j.scico.2009.07.004
http://creativecommons.org/licenses/by/4.0/

	Multi-purpose Syntax Definition with SDF3
	1 Introduction
	2 Phrase Structure
	3 Declarative Disambiguation
	4 Lexical Syntax
	5 Formatting
	6 Parsing
	7 Related Work
	8 Conclusion
	References

