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There is a large gap between the specification of type systems and the implementation of their type checkers,

which impedes reasoning about the soundness of the type checker with respect to the specification. A

vision to close this gap is to automatically obtain type checkers from declarative programming language

specifications. This moves the burden of proving correctness from a case-by-case basis for concrete languages

to a single correctness proof for the specification language. This vision is obstructed by an aspect common

to all programming languages: name resolution. Naming and scoping are pervasive and complex aspects

of the static semantics of programming languages. Implementations of type checkers for languages with

name binding features such as modules, imports, classes, and inheritance interleave collection of binding

information (i.e., declarations, scoping structure, and imports) and querying that information. This requires

scheduling those two aspects in such a way that query answers are stableÐi.e., they are computed only after

all relevant binding structure has been collected. Type checkers for concrete languages accomplish stability

using language-specific knowledge about the type system.

In this paper we give a language-independent characterization of necessary and sufficient conditions to

guarantee stability of name and type queries during type checking in terms of critical edges in an incomplete

scope graph. We use critical edges to give a formal small-step operational semantics to a declarative specifica-

tion language for type systems, that achieves soundness by delaying queries that may depend on missing

information. This yields type checkers for the specified languages that are sound by constructionÐi.e., they

schedule queries so that the answers are stable, and only accept programs that are name- and type-correct

according to the declarative language specification. We implement this approach, and evaluate it against

specifications of a small module and record language, as well as subsets of Java and Scala.
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1 object M { object B { ... }}

2 import M.B;

3 object A {

4 import B._;

5 ...

6 }

7 object B { ... }

(a) Forward reference to shadowing definition.

1 class A extends B.D {

2 def g:Int = f

3 }

4 object B extends C {}

5 class C {

6 class D { def f:Int = 1 }

7 }

(b) Inheritance in Scala.

Fig. 1. Scala examples.

1 INTRODUCTION

In an ideal world, programming language designers should not have to deal with accidental
complexity when defining and implementing languages. Some aspects of language design are
already close to realizing this ideal. For example, parser generators make it possible to obtain
parsers from declarative grammar specifications, thus abstracting over the accidental complexity
of implementing parsing. There should be similar support for generating implementations of type
checkers from declarative specifications of type systems.
The variety of language features found in real-world languages presents many challenges in

the way of this ideal. This paper focuses on the challenges presented by name resolution, an
aspect common to all programming languages. Many language features found in actual languages
interact with name resolution. Modules, imports, classes, interfaces, inheritance, overloading, and
type-dependent member access to objects and records are a few examples that are commonplace.
Implementing type checkers for languages with such features is complicated because the use
of names in programs causes dependencies between type-checking tasks, and requires that the
construction of symbol tables and type environments is interleaved with querying those data
structures. Evaluating a query too early may result in an unstable answerÐi.e., an answer that
is invalidated by subsequent additions to the environment or symbol table. A wrong answer can
have far reaching consequences, either compromising the soundness of the type checker, or later
requiring backtracking on an arbitrary amount of work that depends on the wrong answer.

Consider, for example, the valid Scala program in Fig. 1a. A type checker working its way forward
through the program would initially resolve import B._ to the imported object M.B, and type check
the remainder of the body of A under the resulting environment. If only then it encounters the
local declaration of B on line 7, it needs to redo the type checking of the body of A because the local
definition shadows the earlier imported declaration.
To avoid this, the interleaving chosen by the type checker must ensure that query resolution is

stableÐi.e., that answers to queries that consult the symbol table are not invalidated by subsequent
additions to the environment or symbol table. This can be a non-trivial scheduling problem because
environment and symbol table construction can also depend on answering queries.

Languages often have many features that interact with name binding and disambiguation, and as
a consequence it can be difficult to construct schedules that guarantee query stability. The simple
valid Scala program in Fig. 1b shows for example how classes and inheritance interact with name
resolution. In this program, the f on line 2 resolves to the def f on line 6; but for this resolution to
succeed, the qualified reference B.D on line 1 must first have been resolved to the D on line 4, to
make the bindings in class class D reachable from the body of class A. Resolving B.D in turn depends
on: (1) resolving the B in B.D to object B on line 4; and (2) resolving the C in the extends clause for
object B on line 4 to the C declaration on line 5.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 180. Publication date: November 2020.



Knowing When to Ask 180:3

Determining these dependencies requires a good understanding of the binding and disambigua-
tion rules of a language. The type checking algorithm must take all these dependencies into account,
so that names are only resolved once all information that is relevant to their resolution is collected.
If this is the case, then the result of name resolution is stable. Type checker implementations use
various strategies for stratifying or scheduling the collection and querying of name binding informa-
tion. Every type checker must, implicitly or explicitly, solve this scheduling problem. For example,
Haskell’s binding restrictions ensure that binding collection and resolution can be separated into
static passes over the program, whereas Scala and Rust require type-dependent name resolution,
which requires interleaving type checking and name resolution. A key property of sound strategies
is that names are only resolved after all the relevant information has been collected.
The concrete strategies are irrelevant for understanding and reasoning about the underlying

type system, but crucial to a correct implementation of the type checker. This tension between
implementation and specification is felt by language designers. For example, the Rust language
developers write the following about specifying name binding in the language:1

Whilst name resolution is sometimes considered a simple part of the compiler, there are

some details in Rust which make it tricky to properly specify and implement.

And in reply to changes to the design and implementation of name binding, a contributor states:2

I’m finding it hard to reason about the precise model proposed here, I admit. I wonder if

there is a way to make the write up a bit more declarative.

A more declarative specification should allow reasoning about name binding without having to rely
on an understanding of the operational details such as the scheduling of name and type queries.
But if we want to obtain type checkers from these declarative specifications, we need to be able to
automatically construct sound schedules. In this paper we give a language independent explanation
of necessary and sufficient conditions to guarantee stability of name and type queries during type
checking. We use this to make declarative type system specifications executable as type checkers
for the specified language. Using this approach, we can guarantee that the resulting type checkers
are sound with respect to the formal declarative semantics of the specifications, as well as confluent.
These important properties of type checkers are proven once-and-for-all for languages specified
using our formalism, rather than on a language-by-language basis.

Problem. We start from a specification of an object language’s static semantics in the meta-
language Statix [van Antwerpen et al. 2018]. Language specifications in Statix are given by typing
rules, written as predicates on terms, types, and a scope graph [Neron et al. 2015]. Scope graphs
generalize language specific notions of type environments and symbol tables. A distinguishing
feature of Statix are its scope graph assertions and queries, which can be used to give high-level
specifications of name resolution. These assertions can express fine-grained name resolution rules,
which enable high-level specification of, for example, shadowing rules of Java and Scala.

The problem we face is to derive a type-checker from a Statix specification. Statix’s scope graph
assertions and queries make it possible to give high-level specifications of name binding, but, at
the same time, make the problem of deriving these type checkers more difficult. In particular, we
have to solve a generalized version of the scheduling problem described above. That is, we need
a general characterization of the conditions under which it is sound to query symbol tables and
type environments during type checking. We then need to derive a type checker from a Statix
specification in such a way that these conditions are always satisfied.

1https://github.com/nrc/rfcs/blob/name-resolution/text/0000-name-resolution.md
2https://github.com/rust-lang/rfcs/pull/1560
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The general approach to deriving type checkers from Statix specifications is already sketched
by van Antwerpen et al. [2018], who provide a Java implementation. They explain the problem
with unsound name resolution when queries answers are unstable, and they claim that their
implementation implements a sound strategy. This strategy, however, is only informally described,
and lacks evidence of its soundness.

This paper addresses both those deficiencies by formalizing the derivation of type checkers from
Statix specifications, and proving soundness. Our formalization of the operational aspects revealed
that the Java implementation of Statix is, in fact, not confluent [Rouvoet et al. 2020b, Appendix A],
which we address in this paper by refining the scope graph primitives. Confluence is an important
property because Statix implements a non-deterministic solver. It ensures that the solver does not
have to backtrack on evaluation order. In order to formalize the soundness and confluence results,
we develop a theory around the novel concept of critical edges in scope graphs. We believe that
this concept is a useful device in both the design of languages, and the implementation of their
type checkers. We also hope that the formalization of the operational semantics of Statix makes it
feasible to port the novel ideas of Statix about the high-level specification of name binding to other
formalisms and type checker implementations.

Approach. To enable this formalization, we first introduce Statix-core. This core language refines
and simplifies the previous formulation of the Statix meta-language. The declarative semantics
of Statix-core is similar to the declarative semantics of Statix, and explains what are valid type
derivations of a specified language. In other words, it explains when a given object-language
program, together with a type assignment and a scope graph model of its binding, satisfies the
specified static semantics of an object language.
We equip this refined core of Statix with a novel small-step operational semantics. This opera-

tional semantics takes a specification and an object-language program, and then computes a type
assignment and a scope graph, thus fulfilling the task of a type checker for the object language. The
key question of this paper arises when we try to define how queries in Statix compute. What are
the conditions that ensure that the answer to a scope graph query is stable under future additions
to the scope graph model of binding in the program? Or, how do we know when to ask a query?
To make the condition for query answering precise, we introduce the new idea of critical edges

for a query in a scope graph extension, precisely characterizing missing dependencies of the query.
Conceptually, query answers that are computed in a partial scope graph are stable if recomputing
the answer in a complete model of the program yields the same result. We will show that it is safe
to answer a query in a partial graph G when the complete model contains no critical edges for the
query with respect to G.
The absence of critical edges in the complete model can in practice not be checked by a type

checker because it requires knowing the complete model of binding upfront. We solve this by
weakening the condition to a sufficient condition that can be checked. We then impose a well-
formedness judgment on Statix-core specifications to alsomake this tractable in practice. Specifically,
typing rules must have permission to extend a scope in the scope graph to be able to make assertions
on the scope graph. In practice this means that although scopes can be queried from anywhere,
they can only be extended locally with new binding information.
We prove that the operational semantics of Statix-core using the weaker sufficient condition is

sound for well-formed specificationsÐi.e., it computes a type assignment and scope graph model
that satisfy the specification. Importantly, and in contrast to the implementation of Statix by van
Antwerpen et al. [2018], the non-deterministic operational semantics can also be proven confluent

for the refined Statix-core language. The confluence argument again uses critical edges to reason
about stability of query answers.
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We implement the operational semantics and the static analysis that checks if all rules have
sufficient permissions to extend scopes in Haskell. We give specifications of subsets of Java and
Scala in Statix-core (extended with recursive predicates). Using these specifications we also test

soundness of the reference implementation against the Java and Scala type checker. These case
studies provide evidence of the expressiveness of Statix as a formalism, and show that the well-
formedness restriction does not prohibit specifications of complex, real-world binding patterns.

In summary, the contributions of this paper are:
• A semantic characterization of name resolution query answer stability in terms of critical
edges in an incomplete scope graph (ğ5.2).

• Statix-core (ğ3), a constraint language with built-in support for scope graphs, which distills
and refines the core aspects of the Statix language and its declarative semantics due to van
Antwerpen et al. [2018].

• An operational semantics for Statix-core (ğ4 and ğ5) that schedules name resolution queries
such that query answer stability is guaranteed, thereby allowing language designers to
abstract from the accidental complexity of implementing name resolution.

• A proof that the operational semantics of Statix-core is sound w.r.t. the declarative semantics
of Statix-core (ğ5.3). The key that enables this proof is a type system for Statix-core (based
on permission to extend a scope) and the scheduling criterion that is built into the operational
semantics of Statix-core (based on an over-approximation of critical edges).

• MiniStatix, a Haskell implementation of Statix-core extended with (recursive) predicates. The
implementation infers whether specifications have sufficient permissions to extend scopes,
and can type check programs against their declarative language specification.

• Three case studies (ğ6) of languages specified in MiniStatix: (1) a subset of Java that includes
packages, inner classes, type-dependent name resolution of fields and methods; (2) a subset
of Scala with imports and objects; and (3) an implementation of the LMR module system
that is similar to the one in Rust. The case studies demonstrate the expressive power and
declarative nature of Statix-core, and test the approach against the reference type-checkers
of Java and Scala.

2 SPECIFYING & SCHEDULING NAME RESOLUTION

Programming languages with modules or objects (e.g., ML, Java, C♯, Scala, or Rust) use very different
name resolution rules than languages with only lexical scoping. For example, the static semantics
of non-lexical static binding, such as accessing a member of an object o.m, is to resolve the name
m not in the local (lexical) scope, but in a remote scope (in this case the inner scope of the class
declaration that corresponds to the type of the reference o). Similarly, a name in Scala or Rust is
not always resolved in the lexical scope, but sometimes in an explicitly imported module or object
scope, whose definitions may be declared in a very different part of the program.

These richer scoping constructs lead to more subtle resolution and disambiguation rules. Scala,
for example, applies different scoping rules for names defined in the lexical scope (which can
be forward referenced) compared to names that are imported (which cannot). Scala also applies
different precedence rules depending on whether an imported name is explicitly listed, or caught by
a wildcard. Precedence rules are often incomplete, in the sense that overlapping names sometimes
lead to ambiguous uses. This requires more information to be available in environments.
These aspects make it more difficult to both specify, and implement static semantics. In this

section we discuss both specification and implementation. We first discuss the role of name binding
in the specification of static semantics (ğ2.1), and how Statix as a formalism enables the high-level
specification of the above mentioned features (ğ2.2). We then discuss how name binding features
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object o {

def f:Int = g;

def g:Int = f

}

(a) Mutual binding.

T-Body
𝐸 + 𝐸 ′ ⊢ bs ⇒ 𝐸 ′

𝐸 ⊢ { bs } ⇒ 𝐸 ′

T-Seq

𝐸 ⊢ b ⇒ 𝐸 ′ 𝐸 ⊢ bs ⇒ 𝐸 ′′

𝐸 ⊢ b;bs ⇒ (𝐸 ′ ⊔ 𝐸 ′′)

T-Def
𝐸 ⊢ 𝑒 : 𝑇

𝐸 ⊢ (def f : 𝑇 = 𝑒) ⇒ {𝑓 : 𝑇 }

(b) Typing of mutual binding using environments.

Fig. 2. Scala example program and the corresponding typing rules.

contribute to a scheduling problem for type checkers (ğ2.3). Finally, we show how the innovative
features of Statix impact this scheduling problem (ğ2.4). We will argue that there are two sides to
this. On the one hand, these features make the scheduling problem more difficult because value
dependencies are less explicit. On the other hand, the high level specification of binding in Statix
provides a semantic tool to think about the scheduling problem and recover a provably sound
schedule: critical edges. We end this section with an overview of how we use critical edges to
address the scheduling problem for Statix.

2.1 Name Resolution: Non-lexical Static Binding and Disambiguation

The presence of non-lexical name binding can easily complicate a specification, harming conciseness,
understanding, and maintenance of the static semantics rules. Typing rules use type environments

to propagate binding information through a program. Type environments are appropriate and easy
to use in the specification of static semantics for languages with only lexical binding because lexical
binding follows the nesting structure of the AST. This is not the case for languages with non-lexical
static scoping, where binding information may flow through references (e.g., module imports), or
against the nesting structure of the AST (forward references) [Hedin 2000].

To demonstrate the issues that arise in language specification, we consider a simple Scala program.
The program in Fig. 2a is a well-typed Scala program with two methods in an object o that mutually
refer to one another. To specify the static semantics of such a list of mutually recursive definitions,
we can follow the style of the ML specification [Milner et al. 1997], which uses rules of the form
𝐶 ⊢ 𝑒 ⇒ 𝐸, with 𝐶 the type environment of the phrase 𝑒 , and 𝐸 the context generated by the
phrase 𝑒 . The context 𝐶 is downward propagating, whereas 𝐸 is upward propagating. We obtain
the rules for block definitions shown in Fig. 2b. Name resolution behavior is the result of the way
environments are combined in the different rules. The mutually-recursive behavior of the block is
visible in rule T-Body, which updates the type environment with the aggregated binding that has
propagated upwards from the block. The combination operator + in the premise of T-Body updates
the environment such that it shadows bindings in 𝐸 that are also in 𝐸 ′. The disjoint union ⊔ in
the conclusion of T-Seq merges the environments produced by the definitions in the sequence,
and enforces that the names do not overlap. We can see in this example that environments play
two roles in these rules: to aggregate binding information from the program, and to distribute it
throughout the program. Aggregation ties back into distribution at the scope boundary.
The update and disjoint union of environments are examples of bookkeeping operations that

encode high-level binding concepts: disallowing duplicate definitions and shadowing respectively.
Similarly, the ‘cycle’ in environment aggregation and distribution encodes mutual recursion. Encod-
ing this using environments is a relatively small matter here, due to the limited number of rules
and binding features to take into account. This becomes increasingly more difficult when we add
language features that interact with binding and that require more sophisticated disambiguation.

In particular, non-lexical static binding complicates matters significantly: the definitions in Fig. 2a
are not just locally in scope, but can be accessed from remote use sites, either qualified with the
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object o, or unqualified after importing object o. The potential for remote use significantly increases
the required effort for aggregating and distributing binding facts. To lookup the structure of modules
and classes, we may want to refer to a symbol table. Thus we have to explain through our typing
rules how declarations generate unique entries in this symbol table. This requires aggregating all
the entries to the root of the program. For the purposes of disambiguation, we may also need more
structure in the environment. In Scala for example, we need to look beyond the closest matching
binding because additional binders in outer scopes may make a reference ambiguous.
We argue that bookkeeping of environments is not a high-level means for expressing name

resolution concepts of languages like Scala. Consequently, it is both unnecessarily hard to define
rules that express the right semantics, and unnecessarily difficult to understand the high-level
concepts from the written rules. Previous work proposes Statix [van Antwerpen et al. 2018] to
address this problem. In ğ3, we discuss the concepts of Statix. We will show how Scala’s name
resolution rules can be understood using scope graphs, and made precise using Statix rules.

2.2 Declarative Specification using Scope Graphs in Statix

The problem of aggregating and distributing binding information is addressed by Statix in two ways:
(1) scopes have independent existence and can be passed around, which allows extending scopes
without the need for explicit aggregation, and allows remote access without explicit distribution;
and (2) shadowing behavior is specified at the use site, allowing definitions to simply assert the
scoping structure without having to anticipate all possible uses. To achieve this, Statix typing rules
are predicates on terms and an ambient scope graph. Nodes in the graph represent scopes and
binders, whereas (labeled) edges are used to represent (conditional) scope inclusion. Nodes contain
a data term that can carry the information of a binder.

The binding of the program in Fig. 2a can be summarized as the scope graph in Fig. 3a. We write
𝑠 ↦→ 𝑡 for a node with identity 𝑠 and data term 𝑡 . The nodes 𝑠R and 𝑠o represent the root scope and
the object scope respectively. The latter is a lexical child of the former, indicated by the L-edge.
The object scope contains two declarations, indicated by the two D-edges to declaration nodes,
whose data terms f : Int and g : Int contain the usual information about the binders.

Previous work has shown how scope graphs can be used tomodel many binding structures [Neron
et al. 2015; van Antwerpen et al. 2016, 2018]. The fact that this particular scope graph models the
binding of the given program, is made formal through a number of Statix rules, together with
the declarative semantics of Statix. We give the required rules here using the Statix-core syntax,
so that we can informally discuss how Statix constraints address the problems with declarative
specification of binding using environments explained above. We will explain the formal syntax
and declarative semantics of Statix-core in ğ3.

The Statix-core counterparts to the ML-specification style rules for the mutual binding in Fig. 2a
are given in Fig. 3b. The Statix specification consists of constraint rules, which define that the
typing judgment in the conclusion holds if the constraints in the premises hold. The phrases are
typed in a lexical scope 𝑠 , written suggestively as 𝑠 ⊢ 𝑡 .3 Premises are separated using conjunction
(∗). The fact that blocks introduce new scope is expressed in the rule T-Body by asserting a scope 𝑠 ′

in the scope graph (using ∇𝑠 ′ ↦→ ...), connected to the lexical parent by an L-edge (using 𝑠 ′ L 𝑠).
The declarations are asserted similarly in the rule T-Def using a D-edge.

The first notable difference with the ML-style rules is that the Statix rules have no upward
propagating context for aggregating binding. This is unnecessary because of the reference semantics
of scopes in Statix rules. The rule T-Def can directly assert the structure that a definition induces

3The form of this typing judgment is not enforced in Statix rulesÐi.e., Statix predicates do not have to be defined exclusively

over AST terms and can have multiple scope arguments.
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𝑠r ↦→ ()

𝑠o ↦→ ()

L
𝑠f ↦→ f : Int

D

𝑠g ↦→ g : Int

D

(a) Scope graph for Fig. 2a.

T-Body
(∇𝑠 ′ ↦→ ()) ∗ (𝑠 ′ L 𝑠) ∗ (𝑠 ′ ⊢ 𝑏𝑠)

𝑠 ⊢ { bs }

T-Seq

(𝑠 ⊢ b) ∗ (𝑠 ⊢ bs)

𝑠 ⊢ b;bs

T-Def
(𝑠 ⊢ 𝑒 : 𝑇 ) ∗ (∇𝑠 ′ ↦→ (𝑓 : 𝑇 )) ∗ (𝑠 𝐷 𝑠 ′) ∗ noDups(𝑠, 𝑓 , 𝑠 ′)

𝑠 ⊢ (def f : T = e)

(b) Typing rules using Statix-core constraints.

Fig. 3. Scope graph and Statix-core rules for the example in Fig. 2.

in the ambient scope graph. Because the scope graph is a global model of binding, this structure
does not need to be explicitly aggregated or distributed.
The second difference is in the way that lexical shadowing is specified. Rather than encoding

this disambiguation rule using environment update in T-Body, the Statix-core rule only witnesses
the structure of the scope graph model. Disambiguation is expressed directly in the rule for typing
variables. We postpone the discussion of scope graph queries that fulfill this purpose until ğ3. For
now it suffices to know that variable lookup works by finding minimal paths in the scope graph.
Shadowing can be expressed by using a lexicographical path order where D < L.
The third difference is that the rule T-Seq is a completely binding-neutral rule. The fact that

definitions should be unique in their scope, is expressed directly as a premise noDups(...) on the
rule T-Def, rather than being encoded in the way that sequencing aggregates binders. We leave the
predicate abstract for now, but it is specified using a graph query in the declaration scope.

Specification of languages with rich, non-lexical name binding features is complicated when us-
ing environment-based typing rules. Statix provides a general formalism that allows concise

specification of these languages, by removing the concerns of aggregating and distribut-

ing binding information from the typing rules.

2.3 Sound Type Checkers Require Scheduling

We now turn to the problem of writing a type checker based on a specification of static semantics,
focusing on the difficulties surrounding name binding features. We will argue that type checkers
face a scheduling problem in constructing the relevant environment and symbol table (or scope
graph) to be able to type the names used in a program. Consider again the typing rules in Fig. 2b.
A type checker arriving at the block faces the problem that the downward propagating input
environment is constructed from the upward propagating output environment. For this reason, the
type checker needs to be staged: it first needs to aggregate the binding from the block, before it
can type check the expressions in the right environment. This simple example demonstrates how
name binding induces dependencies between tasks in a type checker. Name resolution (and thus
type checking) is only sound with respect to the typing rules if queries are only executed after all
relevant information has been aggregated.
The binding features of a language determine how difficult it is to find a sound schedule. A

language with forward references requires a schedule in which binding aggregation happens before
querying. In our simple example, the schedule can be entirely static: one can always collect all
definitions before ever typing their bodies. First class modules and type-dependent name resolution
require more dynamic scheduling. For example, the resolution of a member name m in a Java or
Scala expression e.m(...) requires the type of e. Typing e can in turn depend on all kinds of name
resolution and type-checking tasks. This means that name resolution cannot be statically stratified.
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When language engineers develop a type checker for a given language, they implement either
such a statically stratified schedule as a number of fixed type-checking passes, or implement a
method that in effect schedules type-checking tasks dynamically (even if the scheduling is simply
‘on demand’). Soundness of the implemented approach is judged by the language engineers. Our
goal is to automatically obtain sound type checkers from typing rules, and therefore we need a
systematic approach to solving the scheduling problem.

2.4 Sound Schedules from Statix Rules

In ğ2.3 we arrived at a sound schedule for the typing of mutually recursive binding simply by
lazily following the demand for dependencies. These dependencies are explicit in the environment-
based rules of Fig. 2b. In languages with more complex scope and disambiguation rules, the
dependencies of name resolution are not as easy to determine. We have argued that environment-
based rules are difficult to specify for such languages. Ensuring that those rules can be evaluated
on demand puts additional requirements on the rules, making it even more difficult to write the
specification [Boyland 2005]. (This is a known problem with canonical attribute grammars. We
compare in depth to attribute grammars in ğ7.) By decoupling scope from binding and name
resolution rules in those scopes, Statix rules can specify complicated languages without regard
for dependencies. As a result, more work is required to reconstruct the dependencies and a sound
schedule from the rules.

object o {

def f:Int = g;

import n._;

def g:Int = h

}

object n {

def h:Int = 42;

}

Fig. 4. Scala example

with mutual binding and

imports.

We illustrate this with the Scala program in Fig. 4, which combines
mutually recursive definitions with imports. The semantics of Scala are
such that the definitions in an object are mutually recursive, allowing the
forward reference g, while imports are sequential, only allowing references
to the imported name h after the import statement. Local definitions have
precedence over names imported in the same block, regardless of the order
in which the definitions and imports appear in the program.

The scoping structure of our example is modeled with the scope graph
shown in Fig. 5. The colored dotted boxes show in which scopes names
are resolved, with arrows indicating the resolution path. The definitions f

and g are declared in the object scope 𝑠o. Because imports are treated
sequentially, import statements induce a scope, connected to the previous
import or object scope using a B-edge. The import is represented by an I-edge to the scope 𝑠n of
object n. The forward reference g resolves to the definition in the same scope. The reference to h

reaches the imported name via the B-edge and the outgoing I-edge.
Name resolution can be specified in terms of queries on the scope graph, which specify reachability

and visibility of declarations in terms of a regular expression and an order on paths, respectively
(ğ3.1). In this Scala subset, a declaration is reachable if it can be found in the scope graph via a path
that matches the regular expression B∗ (LB∗)∗I?D. One can check that all the colored paths indeed
match the regular expression.
During type checking, the scope graph is constructed from an initial empty graph, by adding

more and more scopes and edges, until the graph is a complete model of the binding and scoping
structure in the program. Name resolution is finding least reaching paths in the scope graph.
Although conceptually simple, difficulty arises because scope graph construction can depend on
resolving queries as well as the other way around. This is the case for imports, where the I-edge
depends on resolution of the named import. In general, even the fact whether there is an edge at
all can depend on name resolution. This means that scope graph construction must be interleaved
with query evaluation.
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𝑠R

𝑠o ↦→ o

D

L

𝑠f ↦→ f : Int

D

𝑠g ↦→ g : Int

D

B

𝑠n ↦→ n

D

L
𝑠h ↦→ h : IntD

I

g

n

h

Fig. 5. Scope graph corresponding

to the program in Fig. 4.

This raises the following concrete scheduling problem: Given a
scope graph query, a partial scope graph, and a partially satisfied
type specification, is it sound to evaluate the query now or should
it be delayed? Conceptually, the answer is ‘yes, it is sound’ if the
answer to the query in the current partial model is the same as
the answer in a complete model. The answer is ‘no, delay’ if the
complete model contains additional binding information that is
relevant to the query at hand.
To specify what information is relevant, we introduce the no-

tion of critical edges for a query in a model with respect to a partial
scope graph. An unstable resolution answer means that a resolu-
tion path that is valid in the model graph is not yet a valid path in
the partial graph because some part of the final graph is missing.
A critical edge of a query is an edge along a resolution path in
the model that is not present yet in the partial graph, but whose
source node is present. We can think of critical edges as the root
cause of instability, as they are the first missing step in a resolution
path in the model. Whether an edge is critical is determined based on the regular expression that
expresses reachability, which exactly demarcates the part of the scope graph that will be searched.

Because the complete model is yet unknown, we cannot directly identify missing critical edges.
Instead, we look ahead at the remaining type checking problem to determine whether any critical
edges are still missing. In general, precise determination may require arbitrary type checking,
which would lead to a backtracking implementation. Instead, we approximate critical edges as
weakly critical edges, whose absence can be determined without backtracking. We show that our
approximation is sound for a subset of Statix specifications. Importantly, we can statically determine
if a specification is in this subset using a type analysis that we formalize as permission-to-extend.

3 STATIX-CORE: A CONSTRAINT LANGUAGE

In this section we introduce Statix-core, modeling the essential ingredients of Statix [van Antwerpen
et al. 2018]: a framework for the declarative specification of type systems. Statix specifications have
a precise declarative semantics that specifies which scope graphs are models of the specification.
They do not have a formal operational semantics that can be used to find a model for a given
program if it exists. Such an operational semantics requires a sound scheduling strategy for name
and type resolution.
In ğ3.1 we first introduce scope graphs formally, together with a concise presentation of its

resolution calculus [Neron et al. 2015; van Antwerpen et al. 2016]. We then present the syntax
(ğ3.2) and declarative semantics (ğ3.3) of Statix-core. Subsequently, in ğ4 and ğ5, we present the
sound operational semantics using a general delay mechanism for queries based on critical edges.

3.1 Preliminaries

Statix-core is a constraint language extended with primitives for scope graph assertions and queries.
The assertions internalize scope graph construction, whereas the queries internalize scope graph
resolution. We discuss what a scope graph comprises, and present resolution in scope graphs as
computing the answer to a visibility query.

Scope graphs. A scope graph G is a triple ⟨𝑆, 𝐸, 𝜌⟩ where 𝑆 is a set of node identifiers, 𝐸 is a
multi-set of labeled, directed edges, and 𝜌 is a finite map from node identifiers to terms. We will write
𝑆G , 𝐸G and 𝜌G for projecting the three components out of a graph G, and may omit the subscript
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when it is unambiguous. We will refer to the term associated with a node identifier as the datum of
a node. The complete syntax of graphs and terms is given in Fig. 6. We write 𝜖 for the empty graph
and G ⊑ G′ for the extension order on graphs. On sets we use the notation 𝑋 ⊔ 𝑌 to denote the
disjoint union of sets 𝑋 and 𝑌 , 𝑋 \ 𝑌 to denote the set difference, and 𝑥 ;𝑋 to denote {𝑥} ⊔ 𝑋 .

Regular paths. Name resolution is modeled with regular paths in the graph. We write G ⊢ 𝑝 :

𝑠
𝑤
−→ 𝑠𝑘 to denote that 𝑝 is a regular (acyclic) path in G, starting in 𝑠 , ending in 𝑠𝑘 , and spelling the

word𝑤 along its edges. We define the operations src (_), tgt (_) and labels (_) to act on paths and
project out the source node 𝑠 , target node 𝑠𝑘 , and list of labels on the edges, respectively.

Graph queries. The answer to a reachability query 𝑠 𝑟 𝐷 is a set of regular paths 𝑠
𝑤
−→ 𝑠 ′ such

that𝑤 matches the regular expression 𝑟 and the datum of 𝑠 ′ inhabits the term predicate 𝐷 :

Ans
(

G, 𝑠 𝑟 𝐷
)

=

{

𝑝
�

�

� G ⊢ 𝑝 : 𝑠
𝑤
−→ 𝑠 ′ and𝑤 ∈ L(𝑟 ) and 𝜌G (𝑠

′) ∈ 𝐷
}

We write L(𝑟 ) for the set of words in the regular language described by 𝑟 . A useful device when
we consider partial reaching paths is the Brzozowski derivative [Brzozowski 1964] 𝛿𝑤𝑟 of a regular
expression 𝑟 with respect to a word𝑤 , whose language is L(𝛿𝑤𝑟 ) = {𝑤 ′ | 𝑤𝑤 ′ ∈ L(𝑟 )}.

Often we are interested in a refinement of reachability, which we call visibility. A datum is visible
via a path 𝑝 only if 𝑝 is a least reaching path. Given reachability answer 𝐴, the subset of visible
paths is defined as the minimum of 𝐴 over a preorder 𝑅 on paths:

min(𝐴, 𝑅) = {𝑝 ∈ 𝐴 | ∀𝑞 ∈ 𝐴. 𝑅𝑞𝑝 ⇒ 𝑅𝑝𝑞}

Reachability is monotone with respect to graph extension: extending a graph with additional
nodes and edges can only make more things reachable. In contrast, visibility is non-monotonic with
respect to graph extension: extending a graph with additional nodes and edges may obscureÐi.e.,
shadowÐinformation that was previously visible.
We can now formally state the notion of stability of query answers that is key to the correct

implementation of static name resolution: a query (answer) 𝑞 is said to be stable between graphs
G ⊑ G′, when the answer set for the query is identical in both graphs: i.e. Ans (G, 𝑞) = Ans (G′, 𝑞).

3.2 Syntax of Statix-core

We introduce the constraint language Statix-core for making assertions about terms and an implicit,
ambient scope graph. The syntax is defined in Fig. 6. We summarize the main syntactic categories.
Terms 𝑡 are either variables 𝑥 , compound terms 𝑓 (𝑡∗), graph edge-labels 𝑙 , graph nodes 𝑠 , or

graph edges 𝑡 𝑙 𝑡 . Importantly, nodes only appear as an artifact of substitution in the operational
semantics and do not appear in source constraint problems. Literals for sets of terms 𝑡 are used to
represent query answer sets in programs and are generated from the disjoint union of singletons
and empty sets. Sets of terms are implicitly understood to exist up to reordering.
Constraints 𝐶 define assertions on terms and an underlying scope graph. As we shall see in

ğ3.3, constraint satisfaction uses a notion of ownership, which gives the semantics a separation
logic [O’Hearn et al. 2001] flavor. This is reflected in the syntax of Statix-core where we use𝐶 ∗ 𝐶 for
separating conjunction, and emp and false for the neutral and absorbing elements of ∗, respectively.
The 𝑡1 = 𝑡2 constraint asserts that 𝑡1 and 𝑡2 are equal. The 𝑥 binder in existential quantification
∃𝑥 .𝐶 ranges over all possible terms, whereas the 𝑥 in universal quantification ∀𝑥 in 𝑡 .𝐶 ranges over
members in a given finite set of terms 𝑡 .

The assertions on the ambient scope graph G come in two flavors: node and edge assertion. The
former is written ∇𝑡1 ↦→ 𝑡2 and assert that 𝑡1 is a node 𝑠 ∈ 𝑆G such that 𝜌G (𝑠) = 𝑡2. The node
assertion gets unique ownership of 𝑠 , such that no other node assertion can observe the same
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Signature

𝑙 ∈ I label
𝑓 ∈ F term constructor symbol
𝑟 ∈ R regular expression

Variables

𝑥 ∈ X term variable
𝑧 ∈ Z set variable
𝑠 ∈ V node name

Terms

𝑡 ∈ T ::= 𝑥 variable
| 𝑓 (𝑡∗) compound term
| 𝑙 | 𝑠 label and node

Sets of Terms

𝑡 ::= 𝑧 | 𝜁 set variable and set literal
𝜁 ::= ∅ | {𝑡} empty and singleton set

| 𝜁 ⊔ 𝜁 disjoint union

Graphs

G ::= ⟨𝑆 ⊆ V, 𝐸 ⊆ (V × I ×V) , 𝜌 ⊆ (V ⇀ T)⟩

Constraints

𝐶 ::= emp | false true and false
| 𝐶 ∗ 𝐶 separating conjunction
| 𝑡 = 𝑡 | ∃𝑥 .𝐶 term equality and quantification
| single(𝑡, 𝑡) | min(𝑡, 𝑅, 𝑡) | ∀𝑥 in 𝑡 .𝐶 set singletons, minimum and quantification
| ∇𝑡 ↦→ 𝑡 | 𝑡 𝑙 𝑡 node and edge assertion

| query 𝑡 𝑟 𝐷 as 𝑧.𝐶 | dataOf (𝑡, 𝑡) graph query and data retrieval

Fig. 6. Syntax of Statix-core.

fact about the model G. Similarly, edge assertions 𝑡1
𝑙 𝑡2 assert unique ownership of an edge

(𝑡1, 𝑙, 𝑡2) ∈ 𝐸G . The dataOf (𝑡1, 𝑡2) constraint asserts that the data associated with node 𝑡1 is 𝑡2.

Query constraints (query 𝑡 𝑟 𝐷 as 𝑧.𝐶) internalize the reachability queries from ğ3.1: we
query node 𝑡 for the set of all reaching paths over the regular expression 𝑟 to nodes whose data
satisfy the predicate 𝐷 , and bind the query result to 𝑧 in𝐶 . Queries yield sets of paths (embedded as
terms) which motivates the need for set literals, forall quantification over these, and the single(𝑡, 𝑡)

constraint which asserts that 𝑡 is a singleton set containing just the element 𝑡 . The constraint

min(𝑡, 𝑅, 𝑡
′
) asserts that the latter set of terms is the minimum of the former over the preorder

𝑅 and is used to specify disambiguation of a set of reaching paths to the set of visible paths. We
implicitly convert between mathematical sets and term set syntax where necessary. We assume
that the set F of term constructor symbols contains the necessary constructors to encode paths.

3.3 Declarative Semantics of Statix-core

The meaning of constraints is given by the constraint satisfaction relation that is inductively defined
by the rules in Fig. 7. Satisfiability is expressed as G ⊨𝜎 𝐶 , stating that the graph G satisfies the
closed constraint𝐶 with graph support 𝜎 = ⟨𝑆, 𝐸⟩, where 𝑆 ⊆ 𝑆G and 𝐸 ⊆ 𝐸G . In case the satisfaction
judgment holds, we say that G is a model for the constraint 𝐶 .
We lift the declarative semantics to open constraints in the usual way and write G, 𝜑 ⊨𝜎 𝐶 to

denote G ⊨𝜎 𝐶𝜑 . We also define constraint entailment ⊩ and equivalence ⊣⊢, which we will use
when we consider the properties of the operational semantics:

Entails

∀G, 𝜑, 𝜎 . (G, 𝜑 ⊨𝜎 𝐶1 implies G, 𝜑 ⊨𝜎 𝐶2)

𝐶1 ⊩ 𝐶2

Eqivalent

𝐶1 ⊩ 𝐶2 𝐶2 ⊩ 𝐶1

𝐶1 ⊣⊢ 𝐶2

The graph support declaratively expresses ownership of graph structure in constraints. The role
of support in constraint satisfiability gives the resulting logic a separation logic flavor. Support is
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G ⊨𝜎 𝐶 Scope graph G satisfies constraint 𝐶 with support 𝜎

Emp

G ⊨⊥ emp

Conj

G ⊨𝜎1
𝐶1 G ⊨𝜎2

𝐶1

G ⊨𝜎1⊔𝜎2
𝐶1 ∗ 𝐶2

Eq

𝑡1 = 𝑡2

G ⊨⊥ 𝑡1 = 𝑡2

Exists

G ⊨𝜎 𝐶 [𝑡/𝑥]

G ⊨𝜎 ∃𝑥 .𝐶

Singleton

G ⊨⊥ single(𝑡, {𝑡})

Min

𝑡
′
= min(𝑡, 𝑅)

G ⊨⊥ min(𝑡, 𝑅, 𝑡
′
)

Forall-Empty

G ⊨⊥ ∀𝑥 in ∅.𝐶

Forall
G ⊨𝜎1

𝐶 [𝑡1/𝑥] G ⊨𝜎2
∀𝑥 in 𝑡2 .𝐶

G ⊨𝜎1⊔𝜎2
∀𝑥 in ({𝑡1} ⊔ 𝑡2).𝐶

Node
𝑠 ∈ 𝑆G 𝜌G (𝑠) = 𝑡

G ⊨⟨𝑠,∅⟩ ∇𝑠 ↦→ 𝑡

Edge
(𝑠1, 𝑙, 𝑠2) ∈ 𝐸G

G ⊨⟨∅,(𝑠1,𝑙,𝑠2) ⟩ 𝑠1
𝑙 𝑠2

Query

G ⊨𝜎 𝐶
[

Ans
(

G, 𝑠 𝑟 𝐷
)

/𝑧
]

G ⊨𝜎 query 𝑠 𝑟 𝐷 as 𝑧.𝐶

Data
𝜌G (𝑠) = 𝑡

G ⊨⊥ dataOf (𝑠, 𝑡)

Fig. 7. Statix constraint satisfiability.

distributed linearly, which means that we get the constraint equivalences of linear logics: conjunc-
tion is commutative and associative and has emp as its identity and false as the absorbing element,
but the left and right elimination rules of conjunction do not hold.
We lift set operations pointwise to graph support. A particularly important operation is the

disjoint union, written 𝜎1 ⊔ 𝜎2, which is defined as 𝜎1 ∪ 𝜎2, if and only if 𝜎1 ∩ 𝜎2 is empty. We
write ⊥ to denote empty support and distinguish fully supported models from unsupported ones:

G ⊨⟨𝑆G ,𝐸G⟩ 𝐶

G ⊨ 𝐶
Supported

Intuitively, a model G is supported by a constraint 𝐶 when every node and edge in it is asserted
by 𝐶 . For top-level constraints, we are exclusively interested in supported models. Models that
are not fully supported at the top-level contain łjunkž: graph structure that is not asserted by the
Statix specification. For our problem domain it does not make sense to consider those models, as
they would contain binding structure that does not correspond to the input program. Not every
constraint that has a model also has a supported one. Consider for example the following constraint:

∃𝑠 .
(

query 𝑠 𝑃∗ 𝐷 as 𝑧. (∃𝑥 .single(𝑥, 𝑧))
)

Whenever 𝐷 is inhabited, there are clearly graphs that satisfy the constraint. None of those graphs
are supported, however, because there are no node or edge assertions. This means that the whole
constraint has empty support and the empty graph is not a model of the query.

4 SOLVING CONSTRAINTS

Our goal is to derive, from the Statix specification of a type system, an executable type checker. A
sound type checker should take a specification and an input program 𝑒 and construct the ambient
scope graph G such that G and 𝑒 together obey the specification. Or, if and only if the program
does not obey the specification, produce an error. Our approach to this is to equip Statix-core with
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𝜅 → 𝜅 ′ State 𝜅 steps to 𝜅 ′

Op-Conj
〈

G | (𝐶1 ∗ 𝐶2) ;𝐶
〉

→
〈

G | 𝐶1;𝐶2;𝐶
〉

Op-Eq-True

𝑡1𝜑 = 𝑡2𝜑 𝜑 is most general
〈

G | (𝑡1 = 𝑡2) ;𝐶
〉

→
〈

G𝜑 | 𝐶𝜑
〉

Op-Eq-False

¬∃𝜑.𝑡1𝜑 = 𝑡2𝜑
〈

G | (𝑡1 = 𝑡2) ;𝐶
〉

→
〈

G | {false}
〉

Op-Exists

𝑦 is fresh for G and 𝐶
〈

G | (∃𝑥 .𝐶) ;𝐶
〉

→
〈

G | 𝐶 [𝑦/𝑥] ;𝐶
〉

Op-Singleton-True
〈

G | single(𝑡, {𝑡 ′});𝐶
〉

→
〈

G | (𝑡 = 𝑡 ′);𝐶
〉

Op-Singleton-False

¬∃𝑡 ′.𝑡 = {𝑡 ′}
〈

G | single(𝑡, 𝑡);𝐶
〉

→
〈

G | {false}
〉

Op-Node-Fresh

𝑠 ∉ 𝑆
〈

⟨𝑆, 𝐸, 𝜌⟩ | (∇𝑥 ↦→ 𝑡);𝐶
〉

→
〈

⟨(𝑠; 𝑆), 𝐸, 𝜌 [𝑠 → 𝑡] [𝑠/𝑥]⟩ | 𝐶 [𝑠/𝑥]
〉

Op-Node-Stale
𝑡2 is not a variable

〈

G | (∇𝑡2 ↦→ 𝑡1) ;𝐶
〉

→
〈

G | {false}
〉

Op-Data
𝜌 (𝑠) = 𝑡2

〈

G | dataOf (𝑠, 𝑡1);𝐶
〉

→
〈

G | (𝑡1 = 𝑡2);𝐶
〉

Op-Edge
〈

⟨𝑆, 𝐸, 𝜌⟩ | (𝑠1
𝑙 𝑠2);𝐶

〉

→
〈

⟨𝑆, (𝑠1, 𝑙, 𝑠2) ;𝐸, 𝜌⟩ | 𝐶
〉

Fig. 8. Operational semantics of Statix without queries (complete rules in Rouvoet et al. [2020b, Appendix B]).

an operational semantics that reduces constraints, as generated over a program, to a graph that
satisfies the constraint according to the declarative semantics, or rejects the constraint if and only
if such a graph does not exist. In this section we describe such an operational semantics without
queries. We show that the operational semantics enjoys confluence and soundness with respect to
the declarative semantics. Extending the operational semantics to queries requires us to schedule
constraint solving such that the (implicit) dependencies between graph construction and query
resolution are appropriately respected. In ğ5 we formally discuss a naive, unsound strategy, and
develop a sound strategy derived from a formal characterization of a criterion for answer stability:
absence of critical edges in graph extensions.

4.1 The Small-Step Operational Semantics

The operational semantics of Statix without queries is a small-step semantics defined on state

tuples
〈

G | 𝐶
〉

, where G is a graph and 𝐶 is a set of constraints that is repeatedly simplified. The
interesting rules are displayed in Fig. 8. The full operational semantics can be found in Rouvoet
et al. [2020b, Appendix B]. Semantically we treat the constraint set as a large conjunction and we
non-deterministically pick a constraint from this set to perform a step on.
A constraint 𝐶 is solved by constructing an initial state 𝜅 as

〈

𝜖 | {𝐶}
〉

and repeatedly stepping
until a final or stuck state 𝜅 ′ is reached. We say that the operational semantics accepts 𝐶 iff it
reaches a final state

〈

G | ∅
〉

and rejects 𝐶 iff it reaches a final state
〈

G | {false}
〉

. Any other states
in which we cannot reduce by taking a step are said to be stuck.
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The rules for the usual logical connectives (emp, false, 𝐶1 ∗ 𝐶2, =, ∃, ∀, and single) are standard.
The rule for answer set minimums simply proceeds by computation. For ∇𝑡1 ↦→ 𝑡2 there are two
rules. If 𝑡1 is a variable 𝑥 , ruleOp-Node-Freshwill extend the graphwith a fresh node 𝑠 , claim unique
ownership over it, and substitute 𝑠 for 𝑥 everywhere. If 𝑡1 is not a variable, specifically if it is a node,
then it must be owned already and the rule Op-Node-Stale rejects the constraint by stepping to
{false}. For example, both rules would be executed once for the specification ∇𝑥 ↦→ () ∗ ∇𝑥 ↦→ ():
one of the constraints gets ownership, and the other fails to get it. Edge assertions 𝑡1

𝑙 𝑡2
construct new edges in the graph via Op-Edge when both endpoints have become nodes. Multiple
edges with the same label between the same endpoints can exist separatelyÐi.e., there is no edge
counterpart to the be Op-Node-Stale rule. Data assertions dataOf (𝑡1, 𝑡2) compute by unification
when the node 𝑡1 becomes ground.

4.2 Properties of the Operational Semantics

We will show that the operational interpretation of a Statix-core specification is sound with respect
to the declarative reading. That is, if the operational semantics accepts a constraint 𝐶 , then the
resulting graph is a supported model for 𝐶 . And additionally, if the operational semantics rejects
a constraint 𝐶 , then there exists no supported model for 𝐶 . From the perspective of the object
language semantics defined in Statix-core this means that the derived type-checker is sound by
construction with respect to the typing rules of the language.

If we extend our declarative semantics for constraints to states, we can state the soundness crite-
rion more concisely and uniformly. We accomplish this via an embedding of states into constraints:

Definition 4.1. The embedding of a graph ⟨𝑉 , 𝐸, 𝜌⟩ and the embedding of a state
〈

G | 𝐶
〉

are
defined as follows:

J⟨𝑉 , 𝐸, 𝜌⟩K =
(

∗
𝑠∈𝑉

∇𝑠 ↦→ 𝜌 (𝑠)

)

∗

(

∗
(𝑠,𝑙,𝑠′) ∈𝐸

(

𝑠 𝑙 𝑠 ′
)

) r
〈

G | 𝐶
〉

z
= JGK ∗

(

∗𝐶
)

The soundness criterion can now be stated in terms of constraint equivalence between initial and
final states. Specifically, we will show that the following theorem holds:

Theorem 4.2 (Soundness of Statix-core withoutqeries). Let 𝜅 be either an accepting or

rejecting state. The operational semantics for Statix-core without queries is sound:
〈

𝜖 | {𝐶}
〉

→∗ 𝜅 implies 𝐶 ⊣⊢ J𝜅K

This is equivalent to the aforementioned informal definition of soundness, which can be shown
using the facts that top-level constraints are closed and that graphs are trivially a model for their
own embedding. We would like to prove this statement by induction on the trace of steps. This
requires us to show that individual steps operate along constraint equivalencesÐi.e., that 𝜅1 → 𝜅2
implies J𝜅1K ⊣⊢ J𝜅2K. Indeed, this is the case for many of the rules. For example, Op-Conj and
Op-Emp rewrite along commutativity, associativity, and identity of the separating conjunction. The
rules for existential quantification and node assertion, however, cannot be justified using logical
equivalences. To this end we define a more general notion of preserving satisfiability:

Definition 4.3. We write𝐶1 |∼𝐶2 to denote that𝐶2 is satisfiable when𝐶1 is satisfiable, that is, the
existence of a model G for open constraint 𝐶1, implies that G is also a model for 𝐶2, but modulo
graph equivalence (≈):

∀G1, 𝜑1 . (G1, 𝜑1 ⊨ 𝐶1 implies (∃G2, 𝜑2 . G2, 𝜑2 ⊨ 𝐶2 s.t. G1 ≈ G2))

𝐶1 |∼𝐶2
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We also define the symmetric counterpart 𝐶1 ∼||∼𝐶2 ≡ 𝐶1 |∼𝐶2 ∧𝐶1 ∼| 𝐶2, which denotes preser-
vation of satisfiability. For top-level (closed) constraints this notion of preserving satisfiability
coincides with constraint equivalence. Furthermore, constraint entailment 𝐶1 ⊩ 𝐶2 always implies
𝐶1 |∼𝐶2, allowing the use of laws such as identity, commutativity, and associativity of the sepa-
rating conjunction when we reason about preservation of satisfiability. Steps in the operational
semantics are semantically justified in that they preserve satisfiability of the constraint problem:

Lemma 4.4. Steps preserves satisfiability: 𝜅1 → 𝜅2 implies J𝜅1K∼||∼ J𝜅2K
This may feel counter-intuitive, as steps construct a graph and preservation of satisfiability demands
equivalent graphs as the model for the left- and right-hand-sides of the step. The key to under-
standing this lies in Def. 4.1 of the state embedding together with the rules for graph construction
Op-Node-True and Op-Edge, which show that bits of graph (support) are merely moved between
the constraint program and the (partial) model. In the initial state the entire model should be
specified in the input constraint and in the final state the entire model is a given.

Proof sketch. The proof is by case analysis on the constraint that is the focus of the step. Many
cases can indeed be proven using logical equivalences. Other cases, such as the elimination of
existential quantifiers rely on the commutativity of substitutions with embedding of states. The
graph equivalence is trivial everywhere, except for the step Op-Node-True. An arbitrary fresh

node is chosen there, which means that the models for the different sides of the step are only equal
up-to renaming of nodes. □

As a consequence of Lemma 4.4, the operational semantics enjoys soundness with respect to the
declarative semantics (Thm. 4.2).

Proof sketch of Thm. 4.2. The embeddings of the initial and final states reduce to 𝐶 and JGK
respectively. We repeatedly apply the fact that steps preserve satisfiability and prove 𝐶 ∼||∼ JGK.
Now we make use of the fact that graphs are trivially a supported model for their own embedding:
G ⊨ JGK. By the above constraint equivalence, G must then also be a supported model for 𝐶 up-to
renaming of nodes. The theorem follows from the fact that constraint satisfaction is preserved by
consistent renaming of nodes in the model and the constraint, and the fact that node renaming
vanishes on top-level constraints. □

The operational semantics is non-deterministic, but confluent. This can be shown to hold by
proving the diamond property for the reflexive closure of the step relation. A sketch of the proof
can be found in the [Rouvoet et al. 2020b, Appendix A].

Theorem 4.5 (Confluence). If 𝜅 →∗ 𝜅1 and 𝜅 →∗ 𝜅2 then there exists 𝜅 ′
1
and 𝜅 ′

2
such that

𝜅1 →∗ 𝜅 ′
1
and 𝜅2 →∗ 𝜅 ′

2
where 𝜅 ′

1
≈ 𝜅 ′

2
.

5 SOLVING QUERIES: KNOWINGWHEN TO ASK

We address the problem of extending the Statix-core operational semantics to support queries.
First we improve our understanding of the problem, by considering a naive semantics that answers
queries unconditionally. We show that this approach yields unsound name resolution by violating
answer stability. A rule for queries needs to ensure that query answers are stable. We develop the
sound rule in three steps: (1) We characterize the scope graph extensions that causes query answer
instability (ğ5.1) and show that we can guarantee stability by ensuring the absence of (weakly)
critical edge extensions. (2) We describe a fragment of well-formed constraint programs for which
it is feasible to check, without constraint solving, that certain graph edges cannot exist in any
future graph (ğ5.3), addressing the problem that the complete scope graph is unknown during
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type checking. (3) We obtain an operational semantics for well-formed Statix-core constraints
with queries by guarding query simplification by the absence of weakly critical edges in all future
graphs. We prove that this guarded rule preserves satisfiability and thus yields a sound operational
semantics (ğ5.3, Thm. 5.9). In ğ6 we discuss case studies we conducted to test the completeness of
the operational semantics.

5.1 NaiveQuery Answering

Consider a naive and unconditional rule for queries query 𝑠 𝑟 𝐷 as 𝑧.𝐶 :

𝑡 = Ans
(

G, 𝑠 𝑟 𝐷
)

〈

G | query 𝑠 𝑟 𝐷 as 𝑧.𝐶;𝐶
〉

→
〈

G | 𝐶
[

𝑡/𝑧
]

;𝐶
〉
Op-Query-Naive

It solves them by answering the given reachability query in the incomplete graph that is part of
the solver state at that time. It then simplifies the constraint program by substituting the answer
set into 𝐶 . This rule is unsound: it results in graphs that are not models of the input constraint.
Consider the following example:

𝐶 = ∇𝑥 ↦→ ();∇𝑦 ↦→ (); query 𝑥 𝑃+ ⊤ as 𝑧. (∀𝑥 ′ in 𝑧.false) ;𝑥 𝑃 𝑦

The query in these constraints asks for any node that is reachable in the graph after traversing at
least one 𝑃-labeled edge, starting in the node for the variable 𝑥 . It then asserts (via ∀𝑥 ′ in 𝑧.false)
that the answer to this query is empty. A complete trace for this example is visualized in Fig. 9.
Clearly, the final graph in Fig. 9 is not a model for the input constraint. The answer to the query in
the final graph is non-empty: there is a single path in the answer consisting of the only edge in
the graph. The reason for this faulty behavior can be reduced to two observations: (1) the naive
solver answers queries based on incomplete information, namely the partial graph that happens
to be part of its state at that point in the trace, and (2) query answers are in general not stable
under graph extensions that occur later in the constraint solver. This raises the question: what
additional conditions must hold in a given state such that query solving is soundÐi.e., under what
side-condition is the following rule for query answering sound?

〈

G | query 𝑠 𝑟 𝐷 as 𝑧.𝐶;𝐶
〉

→
〈

G | 𝐶
[

Ans
(

G, 𝑠 𝑟 𝐷
)

/𝑧
]

;𝐶
〉

In order to prove that this rule is sound, it suffices to prove that it preserves satisfiability, as is the
case for the other steps of the operational semantics (c.f. Lemma 4.4). Concretely, to show that this
rule preserves satisfiability, we have to prove:

JGK ∗ query 𝑠 𝑟 𝐷 as 𝑧.𝐶;𝐶 ∗
(

∗𝐶
)

∼||∼ JGK ∗ 𝐶
[

Ans
(

G, 𝑠1
𝑟 𝐷

)

/𝑧
]

∗
(

∗𝐶
)

This means that every supported model G′ for the left constraint must be a supported model for
the right constraint as well, and vice versa. When is this the case? It holds exactly when the query

𝑠 𝑟 𝐷 is stable for the graph extension G ⊑ G′. Or, in the terms of the application domain of
Statix, it holds if all relevant namebinding information that may influence resolution of the specified
name is present in G. That means, for example, that no further names will be discovered in the
remainder of the program that shadow declarations that are reachable in the current graph G.

5.2 Ensuring Answer Stability

In this section we untangle the definition of stability under graph extension and find the root cause
of instability: critical edges in a scope graph extension. To guarantee query stability, we want to
prevent that the solver extends the graph with critical edges. We argue however that the absence
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〈

𝜖, ∇𝑥 ↦→ () ; ∇𝑦 ↦→ () ; query 𝑥 𝑃+ ⊤ as 𝑧. (∀𝑥 ′ in 𝑧.false) ; 𝑥 𝑃 𝑦
〉

〈

𝑠1 , ∇𝑦 ↦→ () ; query 𝑠1
𝑃+ ⊤ as 𝑧. (∀𝑥 ′ in 𝑧.false) ; 𝑠1

𝑃 𝑦
〉

〈

𝑠1 𝑠2 , query 𝑠1
𝑃+ ⊤ as 𝑧. (∀𝑥 ′ in 𝑧.false) ; 𝑠1

𝑃 𝑠2

〉

〈

𝑠1 𝑠2 , 𝑠1
𝑃 𝑠2

〉

〈

𝑠1 𝑠2P ,
〉

Fig. 9. Trace demonstrating unsoundness of a naive query simplification rule.

of critical edges is too strong a notion for a solver to verify. To remedy this, we derive the notion of
a weakly critical edge which only considers the extension boundary.

To appoint a root cause of instability of reachability queries under graph extensions G ⊑ G′, we
focus on paths that exist in G′, but not in G:

𝑝 ∈ Ans
(

G′, 𝑠1
𝑟 𝐷

)

\ Ans
(

G, 𝑠1
𝑟 𝐷

)

Because the start node of every path in the answer set of a
query is fixed (in this case to 𝑠1) they can always be partitioned
into a non-empty prefix in G and the remainder. The first edge
of the remainder can be considered the root cause for this new
path in G′. We call such edges critical:

Definition 5.1. An edge (𝑠1, 𝑙, 𝑠2) ∈ 𝐸G′ is called critical with

respect to a graph extension G ⊑ G′ and a query 𝑠 𝑟 𝐷 if
there exist paths 𝑝1 and 𝑝2 that satisfy the following conditions:

(a) G ⊢ 𝑝1 : 𝑠
𝑤1

−−→ 𝑠1 for some word𝑤1,

(b) G′ ⊢ 𝑝2 : 𝑠2
𝑤2

−−→ 𝑠3 for some node 𝑠3 and word𝑤2,

(c) (𝑝1 · 𝑙 · 𝑝2) ∈ Ans
(

G′, 𝑠1
𝑟 𝐷

)

,

(d) and (𝑠1, 𝑙, 𝑠2) ∉ 𝐸G .

Fig. 10 visualizes the critical edges for a particular graph ex-
tension and query. Critical edges for a query are interesting
because their absence in a graph extension guarantees stability
of the answer to that query:

𝑠1

𝑠2
𝑠3

𝑠4

𝑠5 𝑠6 ↦→ 𝑡

𝑠7 ↦→ 𝑡

L M

M

M M

M

M ML

G1

G2

Critical

Weakly critical

Fig. 10. (Weakly) critical edges for the

query 𝑠1
𝐿𝑀

∗
𝐷 (if 𝑡 ∈ 𝐷).

Lemma 5.2 (Absence of Critical Edges). A reachability query 𝑠 𝑟 𝐷 is stable under graph

extension G ⊑ G′ iff G ⊑ G′ contains no critical edges for 𝑠 𝑟 𝐷 .

Proof. This absence of critical edges implies stability because every path that answers a query
that is in the extended graph G′ but not in the original graph G can be partitioned as 𝑝1 · 𝑙 · 𝑝2
such that (tgt (𝑝1) , 𝑙, src (𝑝2)) is a critical edge. Consequently, the absence of critical edges in an
extension immediately implies that the extended graph yields no new answers to the query under
scrutiny. The other direction of this lemma holds trivially. □

As indicated by Lemma 5.2, it would be sufficient for the rule for queries to require the absence
of critical edges in future graphs. The problematic question however is: critical with respect to
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which graph extension? Indeed, the graphs G′ that Lemma 5.2 quantifies over are all future graphs
of a trace in the operational semantics. Precisely knowing G′ is as difficult as solving the constraint
program. Hence it is not feasible for a solver to guard against the absence of critical edges with
pinpoint accuracy. In the remainder of this section we describe a two-part approach to sound
operation of a non-backtracking solver based on over-approximating the criticality of an edge.

Weakly critical edges. Because the notion of criticality is derived from entire new reaching paths
in graph extensions, guarding against critical edge extensions requires looking ahead over arbitrary
constraint solving. Our approximation, a weakly critical edge, reduces the required lookahead to
just one-edge extensions of the current graph:

Definition 5.3. An edge (𝑠1, 𝑙, 𝑠2) is called weakly critical with respect to a graph G and a query

𝑠 𝑟 𝐷 if there exists a path 𝑝1 that satisfies the following conditions:

(a) G ⊢ 𝑝1 : 𝑠
𝑤1

−−→ 𝑠1 for some word𝑤1,
(b) the word (𝑤1𝑙) is a prefix of some word in L(𝑟 ),
(c) and (𝑠1, 𝑙, 𝑠2) ∉ 𝐸G .

In Fig. 10 an edge is highlighted that is only weakly critical: it shares all the features of a critical
edge except that it does not actually give rise to new paths in the answer set of the query. The
intuition behind a weakly critical edge is that itmay lead to additional reaching paths. Every critical
edge is also weakly critical, such that the following corollary holds:

Corollary 5.4. A reachability query 𝑄 = 𝑠 𝑟 𝐷 is stable under graph extension G1 ⊑ G2 if the

graph extension G1 ⊑ G2 contains no edges that are weakly critical for 𝑄 .

Proof. Every critical edge is also weakly critical because (𝑝1 ·𝑙 ·𝑝2) ∈ Ans
(

G′, 𝑠1
𝑟 𝐷

)

implies

that (𝑤𝑙) is a prefix of some word in L(𝑟 ), for𝑤 = labels (𝑝1). The conclusion then immediately
follows from Lemma 5.2. □

Because visibility is defined as the minimum of a reachability query answer (ğ3.1), the absence
of weakly critical edges is also a sufficient condition for stability of visibility query answers.

Corollary 5.5 (Absence of Weakly Critical Edges). A visibility query 𝑄 = 𝑠 𝑟 𝐷 is stable

under graph extension G1 ⊑ G2 if the graph extension G1 ⊑ G2 contains no edges that are weakly

critical for 𝑄 .

Consequently, the absence of weakly critical edges is also sufficient to guarantee the soundness of
visibility queries with any path order ≤p. However, for particular choices of the path order there
exist tractable approximations of criticality of edges for stability of reachability that are more precise
thanweak criticality. For example, the path ordering is often defined as the lexicographical extension
of a precedence ordering on edge labels. Edge extensions of the graph with lower precedence than
existing edges can in that case be disregarded as influential to name resolution. Our results extend
to such refinements in a straightforward manner.

5.3 GuardedQuery Answering

By means of a well-formedness judgment ⊢ 𝐶 wf on Statix-core constraints, we define a large class
of constraints for which we can check the absence of weakly critical edges. To this end we will also
define a predicate𝐶 ̸↩→ (𝑠, 𝑙) which can be checked syntactically, but has the semantics that𝐶 does
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not support any 𝑙-edges out of 𝑠 if 𝐶 is well-formed. We then prove the following guarded query
simplification rule correct:

Op-Query-Guarded

∀𝑠2, 𝑙 .
(

G ⊢ 𝑝 : 𝑠1
𝑤
−→ 𝑠2 and L(𝛿𝑤𝑙𝑟 ) ≠ ∅ implies (𝐶;𝐶) ↩̸→ (𝑠2, 𝑙)

)

〈

G | query 𝑠1
𝑟 𝐷 as 𝑧.𝐶;𝐶

〉

→
〈

G | 𝐶
[

Ans
(

G, 𝑠1
𝑟 𝐷

)

/𝑧
]

;𝐶
〉

Recall that the L(𝛿𝑤𝑙𝑟 ) ̸= ∅ denotes that (𝑤𝑙) is a prefix of some word in L(𝑟 ). Intuitively, the
precondition states that the remainder of the constraint program does not support any weakly
critical edges for the query under scrutiny.

Well-formed constraints. We define well-formedness inductively using the rules in Fig. 11. The
intuition behind well-formed constraints is that asserting new outgoing edges on nodes requires
permission to extend that scope. This judgment is defined in terms of an auxiliary judgment Δ↓,Δ↑ ⊢

𝐶 which denotes that the constraint 𝐶 requires permission for variables in Δ
↓, and has permission

for those in Δ
↑.

Syntactical extends predicate. We also inductively define a syntactical judgment 𝐶 ↩→ (𝑠, 𝑙) in
Fig. 11, denoting that 𝐶 supports an edge (𝑠, 𝑙, 𝑠 ′) for some 𝑠 ′. We write 𝐶 ̸↩→ (𝑠, 𝑙) to denote its
negation. We lift both relations to work on constraint sets. The key result is the following:

Lemma 5.6. For all well-formed constraints the syntactical approximation of absence of support

implies the semantic counterpart. That is:

⊢ 𝐶 wf 𝐶 ̸↩→ (𝑠, 𝑙) G, 𝜑 ⊨𝜎 𝐶 𝑠 ∉ 𝜎

∀𝑠 ′. (𝑠, 𝑙, 𝑠 ′) ∉ 𝜎

Proof sketch. We prove a stronger property, whose assumptions hold under the premises of
the lemma in question:

Δ
↓,Δ↑ ⊢ 𝐶

(

∀(𝑥 ∈ Δ
↓) ⇒ (𝑥𝜑 ̸= 𝑠)

)

𝐶 ̸↩→ (𝑠, 𝑙) G, 𝜑 ⊨𝜎 𝐶 𝑠 ∉ 𝜎

∀𝑠 ′.(𝑠, 𝑙, 𝑠 ′) ∉ 𝜎

The proof itself is by induction on 𝐶 . The interesting case to consider is edge assertions. In case
the source of the edge is ground, the conclusion follows from inversion of the third premise
(𝑠 ′ 𝑙 ′ 𝑡) ̸↩→ (𝑠, 𝑙). In case the source of the edge is represented by a variable 𝑥 , the first premise

guarantees 𝑥 ∈ Δ
↓, such that the conclusion follows by the second premise. □

Equally important is the fact that ⊢ 𝐶 wf is preserved by steps. That allows it to be checked only
once on the input program without dynamically enforcing it on intermediate constraint sets.

Theorem 5.7. Steps preserve well-formedness of constraints:
(

〈

G | 𝐶1

〉

→
〈

G′ | 𝐶2

〉

and ⊢ 𝐶1 wf
)

imply ⊢ 𝐶2 wf

Using the fact that absence of weakly critical edges is sufficient for stability (Lemma 5.4), and the fact
that the absence of weakly critical edges can be ensured for well-formed constraints (Lemma 5.6),
we prove that the guarded simplification rule preserves satisfiability of the constraint problem:

Theorem 5.8. The guarded simplification step preserves satisfiability:
(

∀𝑠2, 𝑙 .G ⊢ 𝑝 : 𝑠1
𝑤
−→ 𝑠2 and L(𝛿𝑤𝑙𝑟 ) ≠ ∅ imply (𝐶;𝐶) ↩̸→ (𝑠2, 𝑙)

)

JGK ∗ query 𝑠1
𝑟 𝐷 as 𝑧.𝐶 ∗

(

∗𝐶
)

∼||∼ JGK ∗ 𝐶
[

Ans
(

G, 𝑠1
𝑟 𝐷

)

/𝑧
]

∗
(

∗𝐶
)
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⊢ 𝐶 wf Constraint program 𝐶 has sufficient permissions

Δ
↓,Δ↑ ⊢ 𝐶 Δ

↓ ⊆ Δ
↑

⊢ 𝐶 wf
Wf-Program

Δ
↓,Δ↑ ⊢ 𝐶 𝐶 requires permissions for names in Δ

↓ and provides them for Δ↑

Wf-True

∅, ∅ ⊢ emp

Wf-False

∅, ∅ ⊢ false

Wf-Conj

Δ
↓
1
,Δ

↑
1
⊢ 𝐶1 Δ

↓
2
,Δ

↑
2
⊢ 𝐶2

Δ
↓
1
∪ Δ

↓
2
,Δ

↑
1
∪ Δ

↑
2
⊢ 𝐶1 ∗ 𝐶2

Wf-Eq

∅, ∅ ⊢ 𝑡1 = 𝑡2

Wf-Exists

Δ
↓,Δ↑ ⊢ 𝐶

(

𝑥 ∈ Δ
↓ ⇒ 𝑥 ∈ Δ

↑
)

Δ
↓ \ {𝑥},Δ↑ \ {𝑥} ⊢ ∃𝑥 .𝐶

Wf-Singleton

∅, ∅ ⊢ single(𝑡, 𝑡)

Wf-Node-Var

∅, {𝑥} ⊢ ∇𝑥 ↦→ ()

Wf-Node-NoVar

𝑡 is not a variable

∅, ∅ ⊢ ∇𝑡 ↦→ ()

Wf-Forall

Δ
↓,Δ↑ ⊢ 𝐶

(

𝑥 ∈ Δ
↓ ⇒ 𝑥 ∈ Δ

↑
)

Δ
↓ \ Δ↑ \ {𝑥}, ∅ ⊢ ∀𝑥 in 𝑡 .𝐶

Wf-Edge-Var

{𝑥} , ∅ ⊢ 𝑥 𝑙 𝑡 ′

Wf-Edge-NoVar

𝑡 is not a variable

∅, ∅ ⊢ 𝑡 𝑙 𝑡 ′

Wf-Query

Δ
↓,Δ↑ ⊢ 𝐶

Δ
↓,Δ↑ ⊢ query 𝑠 𝑟 𝐷 as 𝑧.𝐶

Wf-Data

∅, ∅ ⊢ dataOf (𝑡, 𝑡 ′)

𝐶 ↩→ (𝑠, 𝑙) Constraint program 𝐶 asserts an 𝑙-edge on node 𝑠

Ext-Conj1

𝐶1 ↩→ (𝑠, 𝑙)

(𝐶1 ∗ 𝐶2) ↩→ (𝑠, 𝑙)

Ext-Conj2

𝐶2 ↩→ (𝑠, 𝑙)

(𝐶1 ∗ 𝐶2) ↩→ (𝑠, 𝑙)

Ext-Exist

𝐶 ↩→ (𝑠, 𝑙)

(∃𝑥 .𝐶) ↩→ (𝑠, 𝑙)

Ext-Edge

(𝑠 𝑙 𝑡) ↩→ (𝑠, 𝑙)

Ext-Forall
𝐶 ↩→ (𝑠, 𝑙)

(∀𝑡 in 𝑧.𝐶) ↩→ (𝑠, 𝑙)

Ext-Query

𝐶 ↩→ (𝑠, 𝑙)

(query 𝑡 𝑟 𝐷 as 𝑧.𝐶) ↩→ (𝑠, 𝑙)

Fig. 11. Well-formed constraints and syntax directed edge support predicate.

Proof sketch. We prove this equivalence in the direction right to left. The other direction
proceeds similarly. The hypothesis states that there is a graph G′, which is a supported model for
the right hand side of the above equivalence:

G′, 𝜑 ⊨ JGK ∗ 𝐶
[

Ans
(

G, 𝑠1
𝑟 𝐷

)

/𝑧
]

∗
(

∗𝐶
)

(I)

We prove that the substituted answer to the query is stable for the extension G ⊑ G′. The
conjunction distributes support in disjoint fashion over the operands, and the embedding of G
requires support for all of its nodes and edges. Consequently:

G′, 𝜑 ⊨⟨𝑆G′\𝑆G ,𝐸G′\𝐸G⟩ 𝐶
[

Ans
(

G, 𝑠1
𝑟 𝐷

)

/𝑧
]

∗
(

∗𝐶
)

(II)
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Now assume a weakly critical edge (𝑠2, 𝑙, 𝑠3). By definition we must have that G ⊢ 𝑝 : 𝑠1
𝑤
−→ 𝑠2

andL(𝛿𝑤𝑙𝑟 ) ≠ ∅. From the guard of the query simplification rule we may conclude (𝐶;𝐶) ↩̸→ (𝑠2, 𝑙).
This relation is preserved under the answer set substitution into the constraint 𝐶 . Lemma 5.6 now
ensures that the remainder of the constraint program cannot support the weakly critical edge:

∀𝑠3 .(𝑠2, 𝑙, 𝑠3) ∉
(

𝐸G′ \ 𝐸G

)

It follows by Lemma 5.4 that the answer set is stable for this graph extension:

Ans
(

G, 𝑠1
𝑟 𝐷

)

= Ans
(

G′, 𝑠1
𝑟 𝐷

)

(III)

Combining (I) and (III), we have:

G′, 𝜑 ⊨ JGK ∗ 𝐶
[

Ans
(

G′, 𝑠1
𝑟 𝐷

)

/𝑧
]

∗
(

∗𝐶
)

The desired result follows from query-introduction in the middle operand. □

We have proven that all steps in the extended operational semantics preserve satisfiability. Sound-
ness follows:

Theorem 5.9 (Soundness of Statix-Core with Queries). If the operational semantics accepts

a closed and well-formed constraint 𝐶 , i.e.
〈

𝜖 | {𝐶}
〉

→∗
〈

G | ∅
〉

, then the resulting graph is a

supported model for that constraint: G ⊨ 𝐶 . If 𝐶 is rejected, then no supported model exists.

Proof. The proof is the same as the proof for soundness of the fragment without queries,
using Thm. 5.8 to prove that the additional step in the operational semantics also preserves
satisfiability. □

We end our discussion of the extended operational semantics by observing that it is still confluent.
The interesting critical pair reduces a query in the left step and an edge asserting in the right step.
The diamond is formed using the fact that the premise of the query step ensures that the asserted
edge cannot be critical for the query [Rouvoet et al. 2020b, Appendix A].

6 IMPLEMENTATION AND CASE STUDIES

We developed the operational semantics of Statix-core and have proven that the operational
semantics computes sound name resolution results for well-formed specifications. However, thewell-
formedness restriction and the possibility that the scheduling gets stuck limits the expressiveness of
Statix-core. In this section we describe an evaluation of our approach using MiniStatix: a prototype
implementation of Statix that closely follows the operational semantics.

MiniStatix implements the core constraint language Statix-core, as well as (mutually) recursive
predicates and (guarded) pattern matching, in approximately 3000 lines of Haskell. The language
has a simple module system to enable the larger case study language specifications to be organized
across files. After parsing, the specification is statically checked: names are statically resolved,
after which permissions are inferred for constraints, deriving the relation formally stated in Fig. 11.
The implementation extends the definition of permissions and well-formedness to predicates and
pattern matching.
The solver implementation is a variation of the small-step operational semantics that uses

environments rather than substitution. It uses a round-robin, delaying scheduler for constraints,
which can detect configurations where no more progress can be made (i.e., stuckness). For satisfied
constraints, the solver outputs a complete scope graph and the unifier for the top-level existential
quantifier if there is any. For rejected programs, the solver will give the trace of instantiated
predicates that led to falsification, which functions as a formal explanation of the error. Stuck
configurations are output for specification debugging purposes.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 180. Publication date: November 2020.



Knowing When to Ask 180:23

Table 1. Evaluation: test results.

Language LOC Spec Tests Succeed Fail Stuck

Java 1201 125 125 0 0
Scala 517 109 109 0 0
LMR 263 19 15 0 4

Total 1976 253 249 0 4

We have evaluated our approach
using MiniStatix on three case stud-
ies by implementing a subset of name
resolution for Java and Scala, and
the whole of LMR [van Antwerpen
et al. 2016]: a toy language with mod-
ules and records. The former two
show that our approach can indeed
resolve challenging patterns of real
languages. By targeting subsets of real languages, we are able to directly test our approach against
the Java and Scala type checker. The test succeeds if MiniStatix and the reference type checker
agree on whether a test program is valid. Programs that should be rejected are equipped with
specific error expectations to avoid false positives. The third case study (LMR) is used to explain
when our approach is incomplete, causing stuck configurations in MiniStatix. We count a test case
as a success if it does not get stuck and meets the manually set test expectation (because LMR has
no reference type checker). The results are summarized in Table 1 and we briefly highlight some
parts of the case studies below.
The implementation of MiniStatix, the language specifications and tests are available as an

artifact accompanying this paper [Rouvoet et al. 2020a].

The Java study. We selected a subset of Java with a focus on the binding aspects of packages,
imports, classes, interfaces, inheritance, inner classes, and method and field members. Test cases are
set up so that faulty name resolutions result in type errors and focus on interesting edge cases. The
tests come in pairs that test that good programs are accepted and ill-typed variants are rejected.

Packages in Java are an interesting test subject because at first sight they seem to require remote

extensionÐi.e. the very pattern that is forbidden by our well-formedness restriction. Package names
in Java have no authoritative declaration, but exist by virtue of use. More than one compilation
unit can declare to define members in the same package. The well-formedness restriction indeed
does not permit modeling this by resolving the package name at the top of a compilation unit to
obtain a package scope and contributing definitions to that scope. This would constitute remote

extension of the package scope. However, the right binding semantics can also be modeled via a
mixin-pattern: compilation units query for all other compilation units in the same package and
make their types accessible by adding import edges. This model makes it locally very apparent
what things are in scope of the compilation unit, and also passes the well-formedness check so that
stability of query answers can be guaranteed.

The Scala study. The focus of the Scala case study is resolution of names to local definitions
and imports. Scala not only gives different precedence levels to local definitions, wildcard, and
specific imports, but also distinguishes their scope. Concretely, local definitions are accessible in the
surrounding scope to accommodate mutual definitions, whereas imported names are only accessible
in subsequent scope. This ensures that resolving import statements cannot influence their own
resolution. This simplifies scheduling because it avoids the need to iterate name resolution within
a block. We discuss iterated name resolution (which Rust and LMR require) in more detail below.

The well-typed example test case in Fig. 12a highlights the scoping difference between declara-
tions and imports, and also shows specific imports, wildcard imports, and imports from imported
objects. The forward reference to the locally defined object a is well bound, whereas the imported
definition of h cannot be forward referenced. In addition to the shown features, our Scala subset
supports hiding and renaming in imports.
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object c {

import a._;

def g(): Unit = {

val x: Int = h();

import b.h;

};

def h(): Int = 42;

};

object a {

object b {

def h(): Unit = {};

};

};

(a) Scala’s scoping.

pub mod foo {

pub mod bar {}

}

pub mod test {

use super ::*;

use bar ::*;

use foo ::*;

}

(b) Well-typed Rust example.

pub mod foo {

pub mod foo {}

}

pub mod test {

use super ::*;

use foo ::*;

}

(c) Ambiguous Rust example.

Fig. 12. Example programs from the case studies.

The LMR/Rust study. As a third study we looked at a language that has imports that can affect
their own resolution. (An extended version of the following discussion can be found in [Rouvoet
et al. 2020b, Appendix C]). Although this does not appear to be a common language feature, at
least Rust does implement this import semantics. The difficulty arises because LMR and Rust
combine features that are not usually found together in other module systems: (1) relative imports,
(2) unordered imports, and (3) glob imports. The combination of these features make programs
as depicted in Fig. 12b well-typed. In contrast, Scala has imports that resolve relative to the local
scope, but they only open in subsequent scopeÐi.e., they are ordered. The direct Scala equivalent of
the given example would therefore not be able to resolve the name bar. Example Fig. 12c shows
how this can lead to strange name resolution situations where imports are self-influencing. The
Rust type checker judges this program to be ambiguous: imports do not shadow outer declarations,
so that two declarations of foo are visible in the block of module test.
The Rust type checker uses iterated name resolution to implement the desired behavior, re-

resolving module names until the environment stabilizes. MiniStatix on the other hand gets stuck
on Rust/LMR programs with importsÐi.e., also non-ambiguous programs. The import is specified
using a query and an import edge assertion. However, the query is delayed on the weakly critical
edge assertion that in turn is waiting on the query to resolve the target scope of the edge.
The difference between Scala’s and Rust’s imports exactly exposes the limits of our particular

over-approximation of dependencies using weakly critical edges: it may lead to the operational
semantics being stuck on programs that in principle have a stable model. Rust shows that a sound
fixed point algorithm exists for name resolution in Rust programs. How to systematically derive such
an algorithm from high-level declarative specifications is a different question. From a declarative
specification of self-influencing imports some paradoxes can arise. It is worth pondering what
should be the meaning of Fig. 12c if imports do shadow outer declarations.

7 RELATED WORK

The main novelties of the Statix specification language compared to typical typing rules are the
assertions of scope graph structure, and the queries over the resulting graph. The fact that scopes
are passed by reference enables the high-level specification of name binding in two ways. First, it
makes it possible to separate the assertion that a scope exists from the description of its contents.
This is useful because scope is naturally a concept that extends over larger parts of syntax, whereas
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typing rules are usually given by induction over the syntax. Second, it makes retrieving binding
information about remote parts of the AST lightweight because it is accessible via scope references.
This makes it unnecessary to propagate and construct complicated environments in typing rules.

At the same time, these features present a challenge operationally. In order to maintain soundness
with respect to the declarative semantics, queries need to be delayed until all contributions to the
relevant scopes have been witnessed. This paper addresses that challenge. In this section, we want
to relate to and compare with other approaches to operationalizing declarative specifications of
static semantics.

7.1 Constraint Generation and Solving

Statix is a constraint language in the tradition of Constraint Handling Rules (CHR) [Frühwirth
1998]. CHR has a sound semantics of fact assertion and retraction. Fact assertion and retraction are
considered impure primitives in Prolog [Moss 1986]. Where CHR uses the constraint store to record
assertions, Statix uses the scope graph. Unlike constraint store facts, scope graph facts are only
asserted and never retracted. The context-sensitive effects that can be achieved using multi-head
propagation and simpagation rules in CHR can be realized using scope graph constraints in Statix.
The approach of CHR and Statix is distinctly different from approaches that separate the

constraint generation and constraint solving phases in the tradition of Hindley-Milner type-
inference [Odersky et al. 1999; Pottier and Rémy 2005]. The constraint-generation based formalism
that is closest to Statix is its precursor NaBL2 [van Antwerpen et al. 2016]. Like Statix, it has
built-in support for name resolution using scope graphs [Neron et al. 2015], but separates constraint
generation from constraint solving.
NaBL2 supports type-dependent name resolution, in which the resolution of a name (such

as the method name in 𝑒.𝑚()) depends on the resolution of a type (for the receiver expression
𝑒), which in turn may depend on name resolution. It has to deal with the fact that sometimes
not all binding information is available when a name is resolved. The incomplete information is
represented explicitly in the model using an incomplete scope graph, where unification variables can
be placeholders for scopes. During constraint solving, such unification variables must be unified
before they can be traversed as part of queries. The solver guarantees query stability by relying on
a resolution algorithm that delays when resolution encounters an edge to a unification variable.
Unlike in Statix, scope graphs in NaBL2 can only be incomplete in the sense that the target of

an edge is yet unknown. Edges cannot be missing entirely. This prohibits specifications where
the presence of edges is dependent on resolution in the scope graph. In Statix this is permitted
and used [van Antwerpen et al. 2018]. For example, imports-with-hiding in our Scala case study is
specified using a query that finds all members of an object scope and a new scope that is a masked
version of the object scope. The number of edges of the masked scope depends on query resolution.

7.2 On-demand Evaluation of Canonical Attribute Grammars

Another way to operationalize a type system is to use an attribute grammar (AG), using equations
on AST nodes to define the values of attributes. Attributes are either inherited (i.e., computed by
the parent and propagated down the AST), or synthesized (i.e., computed on the node itself and
propagated upwards). Name resolution can be specified using AGs by taking environment-based
typing rules such as in Fig. 2b and turning the downwards and upwards propagating environments
into inherited and synthesized attributes respectively.
Canonical attribute grammars were implemented by statically computing a schedule (or plan)

consisting of multiple passes over the AST, ordered such that the input values of the attribute
computations in one pass are computed in a previous pass (see Alblas [1991] for a survey). Ex-
pressivity of canonical attribute grammars is limited by this stratified evaluation. By building on
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the circular programming techniques of Bird [1984], Johnsson [1987] shows how dependencies
between attributes can be determined dynamically, relaxing the non-circularity requirements on
specifications. Modern attribute grammar formalisms like JastAdd [Ekman and Hedin 2005, 2007a]
and Silver [Wyk et al. 2010] use these techniques, relying mostly on on-demand computation.
The specification problems that we describe in ğ2 with environment-based rules also affect

canonical attribute grammars (AG). In particular, to gain access to binding information from
somewhere else in the tree, this information needs to be aggregated and distributed through the
least common ancestor [Boyland 2005]. This leads to more complex, non-modular grammars for
languages with complex binding rules [Hedin 2000]. This specification problem is the motivation
for Reference Attribute Grammars (RAGs), which we discuss separately below.

Boyland [2005] also describes how canonical AGs suffer from an implementation problem: pack-
aging multiple values into environment attributes requires that they can be computed at the same
time. Sometimes this causes circular dependencies that disappear when values are split across
multiple environments. This means that the specification writer has to be aware of the operational
semantics. Boyland [2005] concludes: łThe decision of whether two values can be packaged to-
gether (thus reducing complexity and increasing efficiency) relies on global scheduling information,
and thus should be left to an implementation tool, not the description writer.ž This motivates the
development of Remote Attribute Grammars. The same problem also motivated the design of Statix.

7.3 Scheduling of Reference Attribute Grammars with Collection Attributes

Reference attributes [Hedin 2000] are an extension of canonical AGs that allow attributes that
reference AST nodes. Attributes of the referenced AST nodes can be read directly. This can be
used to avoid the need to propagate information using environments, and thus avoids some of the
problems with the specification and the implementation of static semantics using environments
that we described in ğ2. Reference attributes can be used to superimpose graphs on an AST.
By themselves, reference attributes do not solve the problems with the aggregation of binding

described in ğ2. To additionally avoid the specification overhead of aggregating values from an
AST, they can be combined with parameterized attributes or collection attributes [Boyland 1996].

Parameterized attributes are used for example to define name resolution for large subsets of Java
in the JastAdd AG system [Ekman and Hedin 2007a,b]. This is accomplished by defining a parame-
terized lookup attributes on nodes that implement the name resolution policy. These attributes
are invoked on references, passing the name to be resolved. Shadowing can be implemented by
deferring to the lookup of child and parent nodes in a particular order. The effective resolution
policy for the resolution of a variable is thus determined by the combination of all local policies
implemented in the nodes that are traversed. This differs significantly from Statix specifications,
where the resolution policy is determined more uniformly by the query parameters in the variable
rule. The separation queries from scope graph construction in Statix is designed to make it easy to
extract an abstract model of binding. Parameterized attributes are evaluated on-demand.

Collection attributes collect contributions that can come from different contributor nodes through-
out the AST. A contributor uses a reference attribute to specify to which collection it contributes.
The mutual binding example in Fig. 2a can be specified using reference and collection attributes.
A block defines a collection attribute that collects the binding contributions from its immediate
children. To that end the children need a reference to the block, which can be specified as an
inherited attribute. We are not aware of any case studies involving non-lexical static binding that
make use of collection attributes for name resolution.

There are two approaches to evaluating AGs with collection attributes. The first approach is due
to Magnusson et al. [2009]. Before a collection is read, all contributions must have been computed.
To be able to determine if this is the case, a pass is made over the AST and for all contributions to
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any instance of the collection attribute, the reference that is contributed to it is evaluated. Like in
Statix, this is an over-approximation of dependencies. After this, all contributions are evaluated for
the one reference whose collection is being read. Because of the first pass, the reference attribute
can never depend on any instance of the collection attribute, or a cycle would occur [Magnusson
et al. 2009]. This can cause evaluation to get stuck even when sound schedules exist.
The specification of contributions differs from the specification of edges in Statix, in that edge

assertions can occur anywhere in a specification on any scope reference. In a Statix specification that
does not enforce our permission-to-extend restriction, it is not possible to demand the evaluation
of the scope reference that the edge is ‘contributed to’. This is the case because the scope reference
can be determined by arbitrary constraints, which can be blocked. On the other hand, if permission-
to-extend is enforced, then it is unnecessary to evaluate all scope references that are contributed
to. This is the case because a scope that is not yet ground cannot be instantiated to any already
existing scopeÐhence (𝑥 𝑙 𝑡) ↩̸→ (𝑠, 𝑙) is sound.
A Statix specification has no immediate counterpart as a RAG. An obstacle is that Statix rules

do not clearly distinguish inputs and outputs, which is part of their declarative appeal. It also
potentially enables them to be used to solve other language implementation problems that involve
the static semantics, such as suggesting well-typed program completions [Pelsmaeker et al. 2019].
Attribute grammars on the other hand organize specifications into equations for attributes, which
have a clear direction. A benefit of this approach is that dependencies are more explicitly present
in the specification (even for equations that specify contributions to collection attributes), so that
on-demand evaluation is available. Encoding Statix rules into AG equations requires a factorization
into attributes. Whether this is always possible is an interesting open research problem.

8 CONCLUSION

We envision closing the gap between language specification and language implementation by using
specification languages that can address the complexity of actual programming languages and
systematically deriving implementations from specifications. Importantly, this moves the question of
implementation correctness from the concrete language to the specification language. This approach
leads to correct-by-construction language implementations and higher-level specifications that
abstract from operational concerns.

In this paper, we tackled one aspect of that challenge. Critical edges represent language indepen-
dent insight into a scheduling problem that type checker implementations need to address. Because
it is a high-level concept, it can be used to think about language design. We exploit this insight and
obtain sound-by-construction scheduling in type checkers derived from specifications.

Interesting future research topics are the declarative specification of dependently typed languages,
and type inference beyond what is covered by Statix’s support for unification. It would also be
interesting to investigate support for user-defined fixed point properties [Magnusson and Hedin
2003; Sasaki and Sassa 2003], enabling the specification of data-flow analyses in Statix.
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