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Abstract
An intrinsically-typed definitional interpreter is a concise

specification of dynamic semantics, that is executable and

type safe by construction. Unfortunately, scaling intrinsically-

typed definitional interpreters to more complicated object

languages often results in definitions that are cluttered with

manual proof work. For linearly-typed languages (including

session-typed languages) one has to prove that the inter-

preter, as well as all the operations on semantic components,

treat values linearly. We present new methods and tools that

make it possible to implement intrinsically-typed definitional

interpreters for linearly-typed languages in a way that hides

the majority of the manual proof work. Inspired by separa-

tion logic, we develop reusable and composable abstractions

for programming with linear operations using dependent

types. Using these abstractions, we define interpreters for

linear lambda calculi with strong references, concurrency,

and session-typed communication in Agda.

CCSConcepts •Theory of computation→ Separation
logic; • Software and its engineering→ Semantics;Con-
current programming structures.

Keywords definitional interpreters, dependent types, mech-

anized semantics, Agda, type safety, linear types, session

types, separation logic
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1 Introduction
An intrinsically-typed interpreter is an appealing, and practi-

cal specification of the dynamic semantics of a programming

language, that ensures both an executable and a type-safe

semantics. Intrinsically-typed interpreters for simple lan-

guages, such as the simply-typed lambda calculus (STLC),

demonstrate the appeal well (Fig. 1). Because it is an exe-

cutable specification, one can test that the specified behavior

is correct. At the same time, the type of the interpreter ex-

presses a type safety theorem that is enforced interactively
during the development of the specification: if the interpreter

passes the type checker of the host language, then the theo-

rem holds. The integration of the proof in the definition of

the interpreter ensures that the proof can never lag behind

changes of the object language. Moreover, the integration

allows the types of the object language to inform the imple-

mentation. Specifically, dependent pattern matching [10, 12]

rules out the bad cases that cause partiality in an untyped

STLC interpreter. An untyped interpreter cannot guarantee

that lookup of lexical variables succeeds, nor that the eval-

uation of the function expression f in app f e results in a

data Exp : Ty � List Ty � Set where
tt : Exp unit Γ
var : a ∈ Γ � Exp a Γ

lam : Exp b (a :: Γ) � Exp (fun a b) Γ
app : Exp (fun a b) Γ � Exp a Γ � Exp b Γ

data Val : Ty � Set where
tt : Val unit
clos : Env Γ � Exp b (a :: Γ) � Val (fun a b)

eval : Exp a Γ � Env Γ � Val a
eval tt env = tt
eval (var x) env = lookup env x
eval (lam e) env = clos env e
eval (app f e) env with eval f env
... | clos env ′ body = eval body (eval e env :: env ′)

Figure 1. Intrinsically-typed interpreter for STLC in Agda
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closure value. Because the integration of the proof into the

interpreter requires no extra proof work and avoids cases

that cannot occur when evaluating typed terms, integrating

the type safety proof into the interpreter improves the clarity

of the specification.

Unfortunately, extending the object language with new

features, such as computational effects, may require addi-

tional proof work. For example, adding state to a functional

language complicates the type safety invariant of the lan-

guage with monotonicity of store extension [32]. A straight-

forward extension of the STLC interpreter to STLC with ML

references requires manual proof work for weakening ref-

erences using store extension witnesses. These proof terms

in the interpreter obscure the semantics of the object lan-

guage [6]. Similarly, an interpreter for a linearly-typed lan-

guage with threads and session-typed communication needs

to do work to prove that linearity is maintained throughout

all the operations. This proof work quickly exceeds the com-

putational work of the interpreter (as we will demonstrate

in §2). This undermines the quality of the specification, as it

no longer clearly communicates the dynamic semantics of

the object language.

This tension between clarity and the features of the object

languages that we want to specify is painful. We would like

to avoid the partiality of an untyped interpreter, and avoid

maintaining a separate type safety proof, but losing the clar-

ity of the semantics is a high price to pay. The aim of ourwork

is to resolve this tension, by developing reusable abstractions

that not only implement the functional aspects of a language
feature, but also cooperate in proving type safety. In this

paper we develop such dependently-typed, reusable abstrac-

tions for intrinsically-typed interpretation of linearly-typed

languages, with concurrency and session-typed communica-

tion. We show that despite the pervasiveness of linearity, we

can use these abstractions to safely interpret languages with

linear references in a non-linear host language like Agda

with minimal proof work. We accomplish this by extending

the solution of Bach Poulsen et al. [6] for languages with

monotone state, proposing the novel abstraction of mon-

ads on predicates over proof-relevant separation algebras. To
that end we adapt ideas from separation logic [29, 33] to the

proof-relevant setting. The resulting monadic interpreters

are almost free of proof terms. At the mere cost of the few

(and trivial) proof terms that remain, we avoid partiality due

to ill-typed cases, and obtain type safety by construction.

Notation Our abstractions and interpreters (like those in

Fig. 1) are constructed in the dependently-typed language

Agda [28]. We present them in this paper in almost valid

Agda code, omitting universe levels and implicit universal

quantifications for brevity. Sometimes we omit constructors

from syntax definitions, in which case we write an ellipsis in

the signature: data A : Set where (...). We also gloss over

termination issues of the interpreters that we present. In the

artifact that accompanies this paper [34], we make universe

levels and quantifications explicit, and work in a (sized) delay

monad [1, 9, 13] or with fueled interpreters [5, 30, 35].

Contributions We present a new method that makes it

possible to implement intrinsically-typed definitional inter-

preters for linearly-typed languages in a concise way that

hides the majority of the manual proof work. Concretely, we

make the following technical contributions:

• Wedevelop a proof-relevant version of separation logic

using which we can concisely specify co-de-Bruijn

binding in syntax. We use it to specify not just (linear)

lexical binding, but also linear references, without ex-

plicitly mentioning the separation of typing contexts

or store types (§3.1).

• We show that the separation logic connectives, and

the magic wand in particular, are useful to specify op-

erations on these syntaxes, by defining a linear reader

monad transformer using the separation logic connec-

tives and interpreting a linearly-typed lambda calculus

in a type-safe fashion (§3.2).

• We define proof-relevant separation algebras (PRSAs)
as a generalization of traditional separation algebras,

and show that our co-de-Bruijn-style separation logic

is an instance of it (§4.1).

• We define a PRSA calledMarket that takes care of the
accounting of supply and demand in the presence of a

store, and references into it (§4.2).

• We construct a linear state monad using the Market
PRSA, which can be used to interpret linearly-typed

stateful languages in an intrinsically type-safe manner,

without manual accounting of store separation (§4.3).

• We present two case studies that apply these methods

to define monadic and type-safe interpreters that are

almost entirely free of proof terms, for:

– LTLCref—a linearly-typed lambda calculus with lin-

ear references and strong update (§4.4).

– LTLCses—a linearly-typed lambda calculus with con-

currency and session-typed communication (§5). We

develop a linear free monad, ensuring that the ex-

pression semantics is independent of the implemen-

tation of scheduling and communication.

• We implement the library for proof-relevant separa-

tion logic and the case studies in Agda [34].

2 Linear Languages Typed Intrinsically
Before we present the technical contributions of this paper,

we briefly analyze the operations and typing of a functional,

linear language with session-typed communication (§2.1).

We also summarize how we would type the syntax of a linear

language, its semantic components, and its interpreter in

Agda using the standard type formers of Set (§2.2), and show
how this yields interpreters with a lot of proof terms (§2.3).
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2.1 Linear, Session-Typed Languages
As a simple session-typed language [17, 38] we consider a

linearly-typed lambda calculus, extended with primitives

for concurrency (fork) and communication (mkchan, send,
recv, and close). The following sample program (in pseudo

concrete syntax for such a language) exchanges a constant

number between two threads:

let 𝜑𝑙 , 𝜑𝑟 = mkchan (?nat . end)
in let = fork (𝜆 �

let x, 𝜑𝑙2 = recv 𝜑𝑙 in close 𝜑𝑙2)
in let 𝜑𝑟2 = send 42 𝜑𝑟
in let = close 𝜑𝑟2

The mkchan construct spawns a new channel, over which

communication occurs according to the given session type.
This produces two endpoints of dual types: 𝜑𝑙 and 𝜑𝑟 with

session types 𝑛𝑎𝑡 ? end and 𝑛𝑎𝑡 ! end, respectively. The first
type denotes that the endpoint expects to receive a single𝑛𝑎𝑡 .

The second (dual) type expresses that a single 𝑛𝑎𝑡 should be

sent on it. Communication can occur because one endpoint

is captured by the closure that is executed in a new thread.

When communication occurs on an endpoint, the protocol

described by the session type progresses. This is reflected in

our small language by the fact that communication primi-

tives return endpoint references with an updated type. The

following typing rule for send and recv make this precise.

Γ ⊢ ch : ? a . 𝛽

Γ ⊢ recv ch : a × 𝛽

Γ1 ⊎ Γ2 ≃ Γ Γ1 ⊢ ch : ! a . 𝛽 Γ2 ⊢ e : a

Γ ⊢ send ch e : 𝛽

To ensure type safety, subsequent communication must
use the updated channel reference. Reusing the channel end-

point 𝜑𝑟 of type ! 𝑛𝑎𝑡 . end (after sending the number on

it) violates session fidelity—i.e., the communication was not

according to the protocol described by the channel’s session

type—and breaks type safety. Alternatively, discarding the

channel endpoint before sending a value on it leaves the

other thread waiting, thus causing the program to be stuck.

Hence, to attain type safety, one must ensure that channel

references, or values in general, are used linearly—i.e., ex-

actly once. Linearity is visible in the separation of the lexical

context Γ into two disjoint parts Γ1 and Γ2 in the rule T-send

(written Γ1 ⊎ Γ2 ≃ Γ), and is further enforced by limiting the

shape of the context in the rules for literals and variables:

𝜖 ⊢ n : 𝑛𝑎𝑡 (x : a) ⊢ x : a

2.2 The Language LTLCref

A channel endpoint is an example of a reference that ad-
mits strong update: a reference that can change type when

operated upon. It is well-known that strong update is incom-

patible with sharing, and consequently we find linear type

systems in other languages with strong update, such as a

linear lambda calculus with strong references (LTLCref). We

will use LTLCref as a case study, to demonstrate the negative

impact of a linear type system and of linear references on

the clarity of an intrinsically-typed interpreter.
1

We formalize the typed syntax of LTLCref as an inductive

family Exp in Agda. The type Exp of expressions is indexed

by a syntactic type Ty2 and a typing context Ctx:

data Ty where
unit : Ty
ref : Ty � Ty
prod : Ty � Ty � Ty
_⊸_ : Ty � Ty � Ty

Ctx = List Ty

data Exp : Ty � Ctx � Set where (...)
var : Exp a [ a ]
lam : Exp b (a :: Γ) � Exp (a⊸ b) Γ
app : Exp (a⊸ b) Γ1 � (Γ1 ⊎ Γ2 ≃ Γ) �

Exp a Γ2 � Exp b Γ

pair : Exp a Γ1 � (Γ1 ⊎ Γ2 ≃ Γ) � Exp b Γ2 �
Exp (prod a b) Γ

ref : Exp a Γ � Exp (ref a) Γ
swap : Exp (ref a) Γ1 � (Γ1 ⊎ Γ2 ≃ Γ) � Exp b Γ2 �

Exp (prod a (ref b))
del : Exp (ref unit) Γ � Exp unit Γ

The type family combines the grammar of the language with

its typing rules. Note that some expressions (the introduc-

tion and elimination of unit, and the elimination of pairs)

are omitted for brevity. Our representation of the syntax is

informed by the typing rules of the language. Particularly,

we followed the linear treatment of binders and contexts

in the typing rules. The context separation Γ1 ⊎ Γ2 ≃ Γ, a
ternary relation, is inductively defined as an order preserving

interleaving of lists. The representation of lexical variables

var is nothing more than the observation that the context

is a singleton. This nameless representation of binders is

known as the co-de-Bruijn representation [2, 26]. Whereas

in a de-Bruijn representation of binding, the choice between

variables in scope is delayed until the leaves of the syntax

tree, in a co-de-Bruijn representation, the choice is made at

the earliest opportunity. That is, variables are only kept in

the context of a subtree if they are used there. Hence, all of

the information about how to dereference a name is captured

in the context separation witnesses Γ1 ⊎ Γ2 ≃ Γ.
At run time we have a store of values, typed by a store

type ST. The values can be referenced and updated, even if

that changes their type (i.e., strong update). We follow the

1
Although LTLC

ref
’s linear references are too strict for practical purposes, it

is useful for demonstrating the problem and our solution in a simple setting.

2
The underscores in a name defined in Agda denote where the arguments

go. For example, the type for linear functions _⊸_ is used as a⊸ b.
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specification of static variables and also use a co-de-Bruijn

representation for references, thus only revealing to a value

the part of the store that it refers to:

ST = List Ty

data Val : Ty � ST � Set where (...)
ref : Val a [ a ]
pair : Val a Φ1 � (Φ1 ⊎ Φ2 ≃ Φ) � Val b Φ2 �

Val (prod a b) Φ
clos : Exp b (a :: Γ) � Env Γ Φ � Val (a⊸ b) Φ

Here, Env is the environment captured by the closure value.

Both environments and stores are essentially typed, hetero-

geneous lists of values. However, the values in these lists

can themselves be references, such that these lists (1) must

maintain internal separation, and (2) must be separated from

any values outside of it. We index these list by the typing

of their elements (Ψs), and the part of the store that they

consume (Φs):

data All : List Ty � ST � Set where
nil : All [] []
cons : Val a Φ1 � (Φ1 ⊎ Φ2 ≃ Φ) � All Ψ Φ2 �

All (a :: Ψ) Φ
Env = All
Store = All

2.3 The Type of a Linear Interpreter
By typing the source language, the target languages, and

the semantic components, we can specify the type of an

intrinsically-typed interpreter:

eval : Exp a Γ �
Env Γ Φ1 � (Φ1 ⊎ Φ2 ≃ Ψ) � Store Ψ Φ2 �
∃ 𝜆 Ψ2 Φ3 Φ4 �
Store Ψ2 Φ3 × (Φ3 ⊎ Φ4 ≃ Ψ2) × Val a Φ4

This type expresses: (1) type preservation: the value type

matches the expression type, (2) disjoint store consumption:

the Φs that denote consumption of the inputs and outputs

of eval are separated, and (3) absence of dangling references:

the usages sum up to the entire content of the store. The

existential quantification on the right-hand side is due to the

fact that evaluation may add, remove or change cells in the

store in statically unknown ways.

Unfortunately, while correct as a top-level specification,

the type of eval is not strong enough to evaluate effectful

expressions inside a store that contains more than what the

expression itself refers to. This occurs for example when

we attempt to implement function application app f e: we
want to evaluate the function expression f in the part of

the environment that belongs to it. The remainder of the

environment (for e) becomes a frame of the computation that

is not passed to eval, but must remain separated from the

values that the recursive call does manipulate. Consequently,

the consumption of the environment Φ1 and the store Φ2 do

not necessarily add up to the complete store type Ψ. We can

generalize the type to additionally include a disjoint frame

Φ𝑓 . Crucial is that the frame is preserved by the computation,

such that pointers in the frame are not invalidated by eval:

eval : Exp a Γ �
Env Γ Φ1 � (Φ1 ⊎ Φ2 ≃ Φ) � Store Ψ Φ2 �
(Φ ⊎ Φ𝑓 ≃ Ψ) �
∃ 𝜆 Ψ2 Φ3 Φ4 Φ5 �
Store Ψ2 Φ3 × (Φ3 ⊎ Φ4 ≃ Φ5) × Val a Φ4

× (Φ5 ⊎ Φ𝑓 ≃ Ψ2)

The appearance of separation of the store type using _⊎_≃_
in the interpreter type already obscures intention. Imple-

mentations of this type are not any better: even if we look

past pattern matching on an 8-tuple, the separation wit-

nesses of the left- and right-hand side are not merely being

passed around. For recursive calls to eval the separation wit-

nesses have to be reassociated. Recursive evaluation may

update the store, resulting in more separation witnesses and

more proof obligations. The overhead of these proof terms

obscures the computational content of the interpreter and

makes writing them a tedious exercise. This manipulation of

separation proofs in intrinsically-typed semantics of linear

languages has previously been identified as a key issue of

the approach [37].

2.4 Key Idea
The presence of an excessive amount of proof terms com-

prises a big gap in clarity between the typed interpreter of

STLC from Fig. 1 and an interpreter for a linearly-typed lan-

guage. This paper bridges that gap. The key idea is to use

separation logic to build monadic abstractions with whichwe

hide the explicit separation of the store typing from the type

and the implementation of the above evaluation function:

eval : Exp a Γ � 𝜖 [ ReaderT State Γ [] (Val a) ]
eval (app (f ⟨ 𝜎1 ⟩ e)) = do

clos b env ← frame 𝜎1 (eval f )
v ⟨ 𝜎2 ⟩ env ← eval e &⟨ ⊎−idl ⟩ env
empty ← append (cons (v ⟨ 𝜎2 ⟩ env))
eval b

We have yet to define many of the types and operations in

this snippet, but it gives an impression of how our results con-

trast with the straightforward approach represented by the

completely explicated evaluation signature above. The type

and implementation resemble untyped monadic interpreters

of functional languages. Monadic operations like append
and frame manipulate the semantic components (such as

the evaluation environment) in ways that preserve linearity

(§3). The strong guarantees of these operations can be made

precise in their types without drowning the computational

content in specifications of separation.
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The proof work of ensuring linear usage of values is mostly

done by the implementation of the semantic operations, and

by the monad that is being employed underneath the do-

notation. Towitness that values (such as in env) are separated
from values returned from subsequent evaluation we can use

monadic strength _&⟨_⟩_ (§3.2). By explicitly carrying the env
across the bound operation using monadic strength, we get

the additional separation witness 𝜎2, which we need to prove

that the value v is separated from the closure environment.

The only remaining explicit proof term is the use of the left

identity law of separation (⊎−idl). In the next sections we

will build the abstractions that make this possible.

3 Proof Relevant Separation Logic
In §2 we saw that explicitly writing out all typing contexts

and the separation between them quickly becomes a tedious

exercise, which obscures the clarity of the specification and

implementation. In the last shown signature of eval (§2.4), we
addressed this problem by using abstractions based on sepa-

ration logic, which allowed us to omit all separation entirely.

In this section we first recall the basic connectives of separa-
tion logic (§3.1). We then show that separation logic can be

used to consisely program an intrinsically-typed interpreter

for LTLC—the linearly-typed lambda calculus (§3.2). In §4

we will extend this to the state operations of LTLCref, and in

§5 we will extend this to the operations for concurrency and

communication of LTLCses.

3.1 Separation Logic in Agda
To specify separation of contexts (Ctx) and store types (ST),
we define a classic model of separation logic using predicates:

Pred A = A � Set

_⇒ _ : Pred A � Pred A � Pred A
P ⇒ Q = 𝜆 a � P a � Q a

∀[_] : Pred A � Set
∀[ P ] = ∀ {a : A} � P a

data ∪ (P Q : Pred A) : Pred A where
inj1 : ∀[ P ⇒ (P ∪ Q) ]
inj2 : ∀[ Q ⇒ (P ∪ Q) ]

On predicates over lists of types, we define the standard

connectives from separation logic [29]: separating conjunc-
tion ∗, its unit Emp, and magic wand (or separating implica-

tion) −−∗:3

3
The definition of ∗ uses a record to hide the existential quantification over

the resources Φ𝑙 and Φ𝑟 . The ternary constructor of the record has the left

projection, the separation witness, and the right projection as arguments

record _∗_ (P Q : Pred (List Ty))
(Φ : List Ty) : Set where

constructor _⟨_⟩_
field
{Φ𝑙 Φ𝑟 } : List Ty
px : P Φ𝑙

split : Φ𝑙 ⊎ Φ𝑟 ≃ Φ

qx : Q Φ𝑟

data Emp : Pred (List Ty) where
empty : Emp []

_−−∗_ : (P Q : Pred (List Ty)) � Pred (List Ty)
(P −−∗ Q) Φ1 = ∀ {Φ2 Φ3 }

� (Φ1 ⊎ Φ2 ≃ Φ3) � P Φ2 � Q Φ3

We use List Ty so we can use these connectives on contexts

(Ctx) and store types (ST), which are both defined as such.

The separating conjunction ∗ allows us to express concisely

that two predicates are conjoined disjointly. The ∗ associates
to the left, and binds more tightly than both the magic wand

−−∗ and⇒. Note that the quantification in the definition of

magic wand −−∗ is important: a magic wand is a function,

closing over some part of the resource Φ1. The wand accepts

an element of P that consumes a disjoint partΦ2. The result of

the function, in Q, must consume the sum Φ3 of those parts,

such that nothing is lost. The magic wand is the adjoint of

the separating conjunction:

uncurry : ∀[ (P ∗ Q) ⇒ R ] � ∀[ P ⇒ (Q −−∗ R) ]
curry : ∀[ P ⇒ (Q −−∗ R) ] � ∀[ (P ∗ Q) ⇒ R ]

A universally closed function (∀[ P ⇒ Q ]) is the same as

a wand that does not close over any resources (𝜖 [ P −−∗ Q ]),
where:

𝜖 [_] : Pred (List Ty) � Set
𝜖 [ P ] = P []

We often prefer to use the former, because its use and imple-

mentation involve one less separation witness.

Finally, we also make use of the predicate One a that

asserts that the context is a singleton containing a:

data One : Ty � Pred (List Ty) where
one : One a [ a ]

3.2 Typing Linear Syntax and Functions
We now combine separation logic with the technique of

Allais et al. [3] and McBride [26] to specify the typed syntax

of a linearly-typed lambda calculus (LTLC) concisely:

data Exp : Ty � Pred Ctx where (...)
var : ∀[ One a⇒ Exp a ]
lam : ∀[ ((cons a) ⊢ Exp b) ⇒ Exp (a⊸ b) ]
app : ∀[ Exp (a⊸ b) ∗ Exp a⇒ Exp b ]
pair : ∀[ Exp a ∗ Exp b⇒ Exp (prod a b) ]
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Other constructors are omitted, but they follow the same

pattern. We use the operator ⊢ on predicates [3] to extend

the implicit context in the lam constructor:

_ ⊢ _ : (A � B) � Pred B � Pred A
f ⊢ P = P ◦ f

Although technically the values of LTLC are pure and do

not consume any runtime resource (like a store), we will

define values (and thus also environments) as predicates

over store types ST. This prepares us for adding references
to the language, which we will do in the next section.

4
Be-

cause references, like variables, can also be encoded using

the co-de-Bruijn representation, we can use the exact same

approach to specify the run time objects—i.e., values and

environments. For example:

data Val : Ty � Pred ST where (...)
clos : Exp b (a :: Γ) � ∀[ Env Γ ⇒ Val (a⊸ b) ]
pair : ∀[ Val a ∗ Val b⇒ Val (prod a b) ]

The only effect in this linear language is reading a variable
from the environment. We specify the semantics of this effect

by means of a linear Reader predicate transformer. Because
of linearity, reading a value removes that value from the

environment. Reader computations return the part of the

environment that is unread, as it cannot be discarded:

Reader : Ctx � Ctx � Pred ST � Pred ST
Reader Γ1 Γ2 P = Env Γ1 −−∗ Env Γ2 ∗ P

The indices Γ1 and Γ2 of Reader denote the shape of the

environment before and after running the computation, re-

spectively. The magic wand −−∗ denotes that the environment

that the reader computation expects, must be separated from

any value that the computation closes over, while the sepa-

rating conjunction ∗ means that the returned environment

and value in P are separated.

Using Reader we can type the interpreter for LTLC ex-

pressions analogous to a monadic interpreter for STLC:

eval : Exp a Γ � 𝜖 [ Reader Γ [] (Val a) ]

The indices Γ and 𝜖 of Reader denote that the computation

consumes an environment of shape Γ entirely. The fact that

the type is closed with 𝜖 [_] denotes that it does not depend
on any resources outside of the reader computation. Similarly

we can define the operation that allows reading the entire

environment:

ask : 𝜖 [ Reader Γ [] (Env Γ) ]

By indexing reader computations with a pre and post envi-

ronment, we allow for computations that do not consume

the entire environment. Consequently, we can also specify

operations that extend the environment:

4
In practice we would make it parametric in the runtime resource using the

generalized separation logic described in §4.1.

prepend : ∀[ Env Γ1 ⇒ Reader Γ2 (Γ1 ++ Γ2) Emp ]
append : ∀[ Env Γ1 ⇒ Reader Γ2 (Γ2 ++ Γ1) Emp ]
Furthermore, we can use the fact that context separation im-

plies environment separation to frame reader computations

inside larger environments:

frame : Γ1 ⊎ Γ3 ≃ Γ2 �
∀[ Reader Γ1 [] P ⇒ Reader Γ2 Γ3 P ]

In an untyped setting we would use the fact that Reader
is a monad in Set to compose these operations into larger

computations. However, it is a priori unclear in what sense

Reader is a monad. A first attempt is to implement the inter-

face of a monad on predicates:

return : ∀[ P ⇒ Reader Γ Γ P ]
bind : ∀[ P ⇒ Reader Γ2 Γ3 Q ] �

∀[ Reader Γ1 Γ2 P ⇒ Reader Γ1 Γ3 Q ]
Unfortunately, this bind is not strong enough by itself to

implement an interpreter for LTLC. This can be seen more

easily if we recall the equivalence between pointwise-lifted

functions and magic wands, and rewrite the bind as:

bind : 𝜖 [ P −−∗ Reader Γ2 Γ3 Q ] �
𝜖 [ Reader Γ1 Γ2 P −−∗ Reader Γ1 Γ3 Q ]

That is: we can only bind functions that do not close over any

resources. This is insufficient, for example, for interpreting

binary expressions (e.g., function application), where bound

continuations close over previously computed values. To

remedy this, we can internalize the bind:

bind : ∀[ (P −−∗ Reader Γ2 Γ3 Q) ⇒
(Reader Γ1 Γ2 P −−∗ Reader Γ1 Γ3 Q) ]

This internal bind is strong enough to implement the inter-

preter, but the use of magic wands also has a downside: the

fact that a magic wand takes a separation witness as an ad-

ditional argument, means that every step in the interpreter

will receive a proof term that needs to be passed around. As

a side effect, we can also not use Agda’s builtin do-notation,

which expects a bind with the usual arity.

Fortunately, there is third option: a formulation of the

monadic structure with the expressiveness of the internal

bind, but the convenience of the external bind. This formula-

tion, which has been used before by Bach Poulsen et al. [6] to

program with monads in a category of monotone predicates

in Agda, uses the fact that a monad with an internal bind is

equivalent to a strong monad [23, 27]. That is, a monad with

an external bind and monadic strength:

str : ∀[ Reader Γ1 Γ2 P ∗ Q ⇒ Reader Γ1 Γ2 (P ∗ Q) ]
We abbreviate str (mp ⟨ 𝜎 ⟩ qx) as mp &⟨ 𝜎 ⟩ qx. Using
monadic strength, we do not have to close the argument of

a bind over any outside resources. Instead, we pass them to

the bound function through bind. The result is that despite
the rich and complicated underlying structure of separation
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logic, we can program with these monads as regular monads

in Agda.
5
The following excerpt of the LTLC interpreter

from the accompanying code [34] of this paper shows how

we combine reader operations to interpret linear function

application:

eval (app (f ⟨ 𝜎1 ⟩ e)) = do
clos b env ← frame 𝜎1 (eval f )
v ⟨ 𝜎2 ⟩ env ← eval e &⟨ ⊎−idl ⟩ env
empty ← append (cons (v ⟨ 𝜎2 ⟩ env))
eval b

Using frame we first evaluate the function expression in

the part of the environment prescribed by the context sep-

aration 𝜎1. By dependent pattern matching we obtain the

corresponding closure clos b env. This leaves exactly the

part of the environment that is required to evaluate the argu-

ment e. To get evidence that the previously obtained closure

environment is separated from the resulting value v, we use
monadic strength. This evidence is required to construct the

environment for the body b. The indices of the linear Reader
monad ensure that we have constructed an environment that

matches the context for the body. The proof term uses the

fact that separation of lists has [] as a left identity (⊎−idl).
We discuss this and other laws of separation in detail in §4.1.

With minimal proof overhead we have implemented a

linear function application and proven it type safe. Moreover,

any violation of any of the properties that we want to hold,

is caught by Agda during the development of the interpreter.

For example, appending v and env in the wrong order would

be caught because the shape of the environment would not

match the context of b. Or, if we were to forget v and put any
other value in its place, Agda would not accept the definition,

because some resources were lost.

In the process we have developed a reusable abstraction

for linear reader effects. The actual implementation of the

Reader monad is parameterized over an abstract value pred-

icate. Moreover, as its counterpart in Set, Reader be general-
ized to a strong monad transformer ReaderT M Γ1 Γ2 P =

Env Γ1 −−∗ M (Env Γ2 ∗ P) for any other strong monad

M , which we will use in the next section to extend the inter-

preter to the state operations of LTLCref.

4 Intrinsically-Safe Memory
In §2.3 we noted that the explicit signature of a definitional

interpreter expresses not only type preservation and disjoint

consumption of resources, but also memory safety (i.e., there

are no dangling references). These last two properties were

encoded together into a single observation that must hold

on both sides of the evaluation signature: the total amount

consumed, including the frame and the consumption of the

store itself, must combine exactly to what the store provides.

5do v ← 𝑚1;𝑚2 desugars to𝑚1 ≫= (𝜆 v � 𝑚2) where v can be a

pattern.

The separation logic that we presented is by itself insuffi-

cient to express this notion of memory safety. In particular,

while the ∗ can express the disjoint distribution of demand
for store cells, it does not provide a means to equate this with

the supply of the actual store. In this section we develop the

abstractions to balance supply and demand.

We will do this by using predicates not over store types ST,
but over a novel resource Market ST. To that end, we first

generalize the separation logic connectives that we defined

in the previous section to PRSAs—proof-relevant separation
algebras (§4.1). We then define the Market PRSA (§4.2), and

show how it can be used for dependently-typed program-

ming (§4.3), and finally interpret the linear state operations

of LTLCref (§4.4).

4.1 Proof-Relevant Separation Algebras (PRSAs)
In §3 we constructed a simple separation logic for a model

of lists of types and their interleavings. To generalize the

separation logic we consider whether our model is an in-

stance of a separation algebra [8, 14]: a class of models that

yield well-behaved separation logics. Dockins et al. [14] give

an axiomatization of a separation algebra (SA) based on a

ternary join relation. A carrier with a join relation is a sepa-

ration algebra if it is functional, cancellative, commutative,

associative, and has a unit 𝜖 .

Although list interleavings are commutative, associative,

and have a unit 𝜖 = [], they are neither cancellative, nor
functional. Functionality means that x ⊎ y ≃ z1 and

x ⊎ y ≃ z2 imply that z1 and z2 are equal, and cancellativity
means that x1 ⊎ y ≃ z and x2 ⊎ y ≃ z imply that x1
and x2 are equal. Lacking functionality and cancellativity

is ultimately due to the application. Dockins et al. [14] use

ternary relations as a substitute for partial functions: given

an arbitrary x and y, there is no guarantee that a join z
exists such that x ⊎ y = z. For context interleavings
the opposite is the case: there is not just one, but many

possible interleavings to choose from. For their use in co-

de-Bruijn encodings of syntax, the choice is also relevant:

it determines the binding in an expression. Consider for

example the following expression:

lam (lam (pair (var one ⟨ 𝜎 ⟩ var one)))

where _⟨_⟩_ is the constructor of separating conjunction ∗.
This term can denote either 𝜆 (x : a) . 𝜆 (y : b) . (x, y) or
𝜆 (x : a) . (𝜆 (y : b) . (y, x)), depending on the two choices

for the separation witness 𝜎 that distributes the context:

1. 𝜎 : [ a ] ⊎ [ b ] ≃ a :: b :: [], or,
2. 𝜎 : [ b ] ⊎ [ a ] ≃ a :: b :: [].

If the types a and b are the same, then one really has to look

at the proof term to find out how the variables are bound.

To accommodate for models of separation logic with a proof-

relevant notion of separation, we propose a generalization of

SAs that we coin proof-relevant separation algebras (PRSAs).
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A PRSA consists of a carrier C, a ternary separation relation

(_⊎_≃_) on C, and a unit 𝜖 : C, satisfying:

⊎−comm : (a ⊎ b ≃ c) � (b ⊎ a ≃ c)
⊎−assoc : (a ⊎ b ≃ ab) � (ab ⊎ c ≃ abc) �

∃ 𝜆 bc � (a ⊎ bc ≃ abc) × (b ⊎ c ≃ bc)
⊎−idl : 𝜖 ⊎ a ≃ a
⊎−id−l : (𝜖 ⊎ a ≃ b) � a ≡ b

A PRSA is said to be total if it has an append operation

(_ • _ : C � C � C) that forms a monoid w.r.t. 𝜖 , and in

addition satisfies:

⊎−•l : (b ⊎ c ≃ bc) � ((a • b) ⊎ c ≃ (a • bc))
For monoidal PRSAs we get the fact that at least one join

exists for every pair of elements:

⊎−• : a ⊎ b ≃ (a • b)
Instead of dropping the functionality axiom from the no-

tion of SAs by Dockins et al. [14], one could use a weaker no-

tion of equality (i.e., a setoid that expresses equality modulo

reordering). However, there is little hope that we could write

proof-obligation free interpreters that way: state-of-the-art

dependently-typed programming languages like Agda do not

have native support for programming with such weaker no-

tions of equality. Moreover, while the previously presented

notion of separation has a clear candidate for an appropriate

notion of equality, we will also see examples of PRSAs where

this is not the case (§4.2 and §5.1)

We use several instances of PRSAs in this paper. The sep-

aration logic in §3.1, and the Reader monad transformer

discussed in §3.2 generalize easily to arbitrary PRSAs [34],

since the definition does not make use of anything specific

to list separation.

4.2 The Market PRSA
Recall (from §2.2) that Store Ψ Φ is a store with cells typed

by Ψ, and a combined consumption Φ. We will call Ψ the

supply of the store, and Φ its demand. The runtime invariant

for linearity is that the total demand of all consumers of the
store, must add up to the supply. For example, looking at the

explicit type of the semantic action newref to implement the

semantics of ref , we have three consumers: a frame, a value

and the input store:

newref : (Φ1 ⊎ Φ2 ≃ Φ) � (Φ ⊎ Φ𝑓 ≃ Ψ1) �
Val a Φ1 � Store Ψ1 Φ2 �
∃ 𝜆 Ψ2 Φ3 � Store Ψ2 Φ3 × ...

Their demand–Φ𝑓 , Φ1 and Φ2 respectively—add up to the

total left-hand side supply Ψ1. We want to hide all of the

separation accounting. To that end, we need a PRSA that

takes care of both supply and demand. Although we can

construct a product PRSA, this will not suffice, because it

will account for supply and demand in isolation of each

other, and not enforce the top-level equation between them.

Additionally, if we account the supply and demand separately,

the left- and right-hand side supply for an operation like

newref is not going to balance, because both supply and

demand increase.

The key to balancing the equation is not to look at sup-

ply and demand separately, but at their sum. The operation

newref is memory-safe, because it increases supply and de-

mand equally when it returns a pointer to the freshly allo-

cated cell.

To achieve this we construct a PRSAMarket A that tracks

the net supply of the PRSA A, in the presence of multiple

consumers (↓) and at most one supplier (↑) for A:

data Market (A : Set) : Set where
↑ : (s : A) � Market
↓ : (d : A) � Market

By restricting to a single supplier we can apply a simple

accounting method operating in two modes, formalized as

a separation relation _⊎_ ≃𝑀 _ on Market A with three

constructors. If no supplier is present, then we are simply

adding up demand (let _⊎_≃𝐴 _ denote the separation on A):

↓lr : (d1 ⊎ d2 ≃𝐴 d) � (↓ d1) ⊎ (↓ d2) ≃𝑀 (↓ d)

Or, if a supplier is present, we subtract the demand from it,

tracking how much supply is left over:

↑l : (s2 ⊎ r ≃𝐴 s1) � (↑ s1) ⊎ (↓ r) ≃𝑀 (↑ s2)
↑r : (r ⊎ s2 ≃𝐴 s1) � (↓ r) ⊎ (↑ s1) ≃𝑀 (↑ s2)

Importantly, there is no constructor that permits a supplier to

be present on both sides. This ensures that if a single supplier
is present, then every reference is bound in that supplier.

The type Market A, together with this definition of sepa-

ration, is a PRSA for every PRSA A, and has a unit ↓ 𝜖 .

4.3 Programming with the Market PRSA
The predicates Store, Val, and One can be lifted into

Market ST, provided that we clarify their role as suppliers

or consumers. Suppliers, like Store, that are indexed by both

supply and demand, can be lifted under the side-condition

that their internal demand does not exceed supply:

data (P : A � Pred A) : Pred (Market A) where
supplier : P s1 d � d ⊎ s2 ≃𝐴 s1 � P (↑ s2)

Consumers, like Val and One, can be lifted as follows:

data (P : Pred A) : Pred (Market A) where
consumer : P d � P (↓ d)

Both and associatemore tightly than the arrow andwand.

Using these type formers, we can now consisely express the

type- and memory-safe signature of an operation newref
that allocates a new memory cell:

newref : ∀[ (Val a) ⇒ Store −−∗
(One a) ∗ Store ]
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The supply and demand equation balances: the fact that the

store is extended by a single new cell of type a, is offset by
the returned pointer (One a).

We now define a Statemonad, taking special care to define

it as an endofunctor in Pred A rather than Pred (Market A).6
We accomplish this by making explicit that any wand that

takes a supplier as an argument, can itself only be a client.
That is, for any f : ( P −−∗ Q) Φ1 we must have that

Φ1 ≡ ↓ Φ2 for some Φ2. This holds, because the resource that

the wand uses must be separated from the resource used

by the argument, which is fixed to be a supplier. Without

loss of generality, we can thus define the State monad as an

endofunctor as follows:

State : Pred A � Pred A
State P a = ( Store −−∗ P ∗ Store) (↓ a)

This predicate transformer is a strong monad for any notion

of state indexed by both supply and demand, and, as before,

we can generalize it to a monad transformer StateT. The
operations newref, read, and update can be implemented if

the state is instantiated to Store, but are parametric in the

type of values, and the notion of separation between them:

newref : ∀[ Val a⇒ State (One a) ]
read : ∀[ One a⇒ State (Val a) ]
write : ∀[ One a⇒ Val b −−∗ State (One b ∗ Val a) ]
update : ∀[ One a⇒ (Val a −−∗ State (Val b)) −−∗

State (One b) ]

Note that the signature of read tells us that the cell pointed to
by the passed reference is destroyed, as the reference is not

returned from this operation. In contrast, thewrite operation
keeps the cell, returning a pointer with its new type, and

also the value that used to be in it. The update operation is

an example of a higher-order operation, for which the use

of a −−∗ is a necessity.
This strong monad can be programmed with as with any

other monad. Because we defined State as an endofunctor

in Pred A, neither the operations of this monad, nor the

monadic interface, mention or . As a consequence, the

user of this interface does not need to be aware of theMarket
structure that is used for the accounting between the con-

sumers and the supplier.

4.4 An Interpreter for LTLCref

To interpret the entirety of LTLCref, we first extend the values

of LTLC with a constructor for references:

data Val : Ty � Pred ST where (...)
ref : ∀[ One a⇒ Val (ref a) ]

6
Alternatively we may define it as a monad relative [4] to the separation

preserving functor . One still has to take special care to avoid the use

of in the interface, such that the user of the monad does not need to

wrap/unwrap values passed to/returned from the monad.

We instantiate the linear State monad for stores over these

values, and nest it inside the linear Reader monad trans-

former. The state operations of LTLCref are then implemented

as follows:

eval : Exp a Γ � 𝜖 [ ReaderT State Γ [] (Val a) ]
eval (ref e) = do

v ← eval e
r ← liftM (newref v)
return (ref r)

eval (swap (𝑒1 ⟨ 𝜎 ⟩ 𝑒2)) = do
ref ra ← frame 𝜎 (eval 𝑒1)
vb ⟨ 𝜎1 ⟩ ra ← eval 𝑒2 &⟨ ⊎−idl ⟩ ra
rb ⟨ 𝜎2 ⟩ va ← liftM (write ra (⊎−comm 𝜎1) vb)
return (pair (va ⟨ ⊎−comm 𝜎2 ⟩ ref rb))

eval (del e) = do
ref r ← eval e
liftM (read r)

The implementation of swap first interprets the left- and

right-hand side sub-expressions, from which we obtain a

reference and a value. We also get a witness that these are

separated by using monadic strength in the second step. This

witness is needed in the subsequent evaluation step. Using

liftM, we lift the write operation of the State monad into

the reader transformer. From the write, we again obtain a

reference and a value, separated according to 𝜎2. All that

remains is to construct the pair value, which we return.

After context separation, we have now constructed a sec-

ond proof-relevant separation algebra:Market A, formaliz-

ing the accounting of supply and demand of some underlying

resource A. We have used this to construct a monad State
with the familiar semantic operations on typed heaps, trans-

ported to the linear setting. Remarkably, the complexities of

the underlying accounting is hidden from the user entirely.

5 Intrinsically-Safe Session Types
We now turn to the session-typed language LTLCses, and its

operations for spawning threads and conducting commu-

nication. We stage the interpretation into two layers. The

first layer interprets the expression language into command
trees [18], interleaving the communication and threading

commands with thunked evaluation of the expression lan-

guage (§5.1). The second layer interprets these command

trees, thus implementing the scheduling and communication

semantics (§5.2).

To implement these stages, we apply the abstractions that

we developed so far. The syntax of the language, being an

extended linearly-typed lambda calculus, again uses the list

PRSA to deal with co-de-Bruijn variables. The monad for the

expression language interpreter nests a novel free monad

inside the reader transformer. For the command semantics,

we reuse theMarket PRSA and the state monad transformer
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StateT. We combine those with an Error monad to handle

the partiality of receiving messages, and we use a new PRSA

within Market to split channels into their endpoints.

The benefit of staging the interpretation, is that we clearly

separate the runtime (i.e., the communication and concur-

rency model) from the language. The first and second stage

are unaware of each other, and are thus independent and

reusable. We will only implement round-robin scheduling

and asynchronous communication, but one could swap this

semantics of command trees for other schedulers and/or a

synchronous communication model, without adjusting the

expression language interpreter.

5.1 Stage I: Interpreting the Expression Language
We embed the syntax of the concurrency and communication

primitives in Agda, starting by extending the types of LTLC

with a type for channel endpoint references 3 𝛼 :

mutual
data STy : Set where
end : STy
_?_ : Ty � STy � STy
_!_ : Ty � STy � STy

data Ty : Set where (...)
3 : (𝛼 : STy) � Ty

Let 3 bind weaker than the session type constructors. Ses-

sion type constructors for sending and receiving are written

in an infix style, for example a ! 𝛽 for the protocol that sends

an a and continues as 𝛽 . We again use greek variables to

denote session types, and we write 𝛼 −1 for the dual of a

session type.

We then extend LTLC with the five primitive operations

for spawning threads, and conducting communication. The

communication primitives all act on channel endpoint refer-
ences and require the right protocol shape:

data Exp : Ty � Pred Ctx where (...)
fork : ∀[ Exp (unit⊸ unit) ⇒ Exp unit ]
mkch : ∀ 𝛼 � ∀[ Exp (prod (3 𝛼) (3 𝛼 −1)) ]
recv : ∀[ Exp (3 a ? 𝛽) ⇒ Exp (prod (3 𝛽) a) ]
send : ∀[ Exp a ∗ Exp (3 a ! 𝛽) ⇒ Exp (3 𝛽) ]
close : ∀[ Exp (3 end) ⇒ Exp unit ]

We will implement a semantics for these primitive op-

erations in §5.2. The runtime will maintain a collection of

channels, similar to how the runtime of LTLCref maintained

a collection of cells. Unlike cells however, open channels

have two handles which can be referenced independently:

one handle for each endpoint. Hence, we model the session

(or runtime) context SCtx as a list of runtime types [16],
which can be either a single endpoint, or an entire channel

consisting of two typed endpoints:

data RTy : Set where
3r : STy � RTy
chanr : STy � STy � RTy

SCtx = List RTy

Although conceptually channel endpoints have dual types,

in practice, for buffered communication, this may not be the

case [16]. We explain this in more detail in §5.2.

Mere interleavings of SCtx do not describe all the ways

that session contexts can be split. In particular, we have to

account for the separation of channels into their respective

endpoints. We model this using a PRSA Ends:7

data Ends : RTy � RTy � RTy � Set where
lr : Ends (3r a) (3r b) (chanr a b)
rl : Ends (3r b) (3r a) (chanr a b)

We then define a PRSA on lists of a type that can itself

be split—i.e., interleavings with an additional constructor

divide for making ends meet. For SCtx, we obtain:

data _⊎_≃_ : (xs ys zs : SCtx) � Set a where
divide : Ends 𝑥𝑙 𝑥𝑟 x � (xs ⊎ ys ≃ zs) �

(𝑥𝑙 :: xs) ⊎ (𝑥𝑟 :: ys) ≃ (x :: zs)
left : Split xs ys zs � Split (z :: xs) ys (z :: zs)
right : Split xs ys zs � Split xs (z :: ys) (z :: zs)
nil : Split [] [] []

In the same way that values of LTLCref are predicates

over a store type ST, values and other runtime objects of the

session-typed language are predicates over SCtx. As before,
references are typed in a co-de-Bruijn style:

data Val : Ty � Pred SCtx where (...)
cref : ∀[ One (3r 𝛼) ⇒ Val (3 𝛼) ]

Expressions are not interpreted to plain values, but to

command trees [18, 36] with values at the leaves. Outgoing

commands may contain channel endpoint references, and

must therefore be separated from their continuation. This

yields the following strong monad F P of command trees

that will eventually return an instance of P :

data F (P : Pred A) : Pred A where
pure : ∀[ P ⇒ F P ]
impure : ∀[ ∃[ Cmd ]∗ (𝜆 c � 𝛿 c −−∗ F P) ⇒ F P ]

Both (Cmd : Pred A) and (𝛿 : Cmd Φ � Pred A)
are parameters of this construction. The argument 𝛿 c of
the continuation denotes the (dependently typed) response

to the command c. The impure constructor of F uses a de-
pendent separating conjunction to pair a command with its

continuation, generalizing the separating conjunction:

7
Technically Ends does not have an identity, and hence does not satisfy our

definition of a PRSA. In the Agda library we distinguish PRSAs with and

without an identity.
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record ∃[_]∗_
(P : Pred A) (Q : ∀ {Φ} � P Φ � Pred A)
(Φ : A) : Set where
field
{Φ𝑙 Φ𝑟 } : A
px : P Φ𝑙

sep : Φ𝑙 ⊎ Φ𝑟 ≃ Φ

qx : Q px Φ𝑟

The type of impure captures the exchange of resources that
occurs: when a command is issued, a thread gives away

some resources via the command, and keeps the remainder

enclosed in the continuation. The magic wand in the type

of the continuation denotes that the thread may receive

in response new resources, separated from what it already

owned. Using impure, every command can be lifted to an

F-computation:

⟨⟨_⟩⟩ : ∀ (c : Cmd Φ) � F (𝛿 c) Φ

The commands that may appear in command trees are the

effectful operations that are left abstract by the first stage of

interpretation—i.e., the primitive operations for concurrency

and communication:

data Cmd : Pred SCtx where
forkc : ∀[ F (Val unit) ⇒ Cmd ]
mkchc : ∀ 𝛽 � 𝜖 [ Cmd ]
sendc : ∀ a 𝛽 � ∀[ One (3r a ! 𝛽) ∗ Val a⇒ Cmd ]
recvc : ∀ a 𝛽 � ∀[ One (3r a ? 𝛽) ⇒ Cmd ]
closec : ∀[ One (3r end) ⇒ Cmd ]

𝛿 : Cmd Φ � Pred SCtx
𝛿 (forkc ) = Emp
𝛿 (mkchc 𝛽) = One (3r 𝛽) ∗ One (3r 𝛽

−1)
𝛿 (sendc 𝛽 ) = One (3r 𝛽)
𝛿 (recvc a 𝛽 ) = Val a ∗ One (3r 𝛽)
𝛿 (closec ) = Emp

Importantly, fork takes a computation in F, rather than an

Exp to represent the computation. This allows the first and

second stages to be truly independent. By nesting F inside
the reader transformer, we can interpret all the effects of

LTLCses. For example:

eval : Exp a Γ � 𝜖 [ ReaderT F Γ [] (Val a) ]
eval (recv e) = do
cref 𝜑1 ← eval e
𝜑2 ⟨ 𝜎 ⟩ v ← liftM ⟨⟨ recvc 𝜑1 ⟩⟩
return (pair (cref 𝜑2 ⟨ 𝜎 ⟩ v))

eval (send (𝑒1 ⟨ 𝜎 ⟩ 𝑒2)) = do
𝑣1 ← frame 𝜎 (eval 𝑒1)
cref 𝜑1 ⟨ 𝜎 ⟩ 𝑣1 ← eval 𝑒2 &⟨ ⊎−idl ⟩ 𝑣1
𝜑2 ← liftM ⟨⟨ sendc (𝜑1 ⟨ 𝜎 ⟩ 𝑣1) ⟩⟩
return (cref 𝜑2)

Again, the hard work of maintaining separation is hidden.

Additionally, using the free monad construction, the concur-

rency is hidden. Finally, the fact that receiving a message

on a channel is a blocking operation and may have to wait

for the corresponding sent is completely opaque. The imple-

mentation of concurrency and communication is completely

up to the second stage interpreter.
8

5.2 Stage II: Interpreting Command Trees
By interpreting the expression language to command trees,

we have given an operational semantics for everything ex-

cept the five primitive operations for concurrency and com-

munication. These are the operations that operate on the

runtime state of the language: the collection of channels and

the threadpool. In this section we first explain how threads

are represented, and how one computes a single step in a

thread. Then, we look closely at the channel state and the

communication operations on it. Finally we wrap it all up

into a function handle that interprets a single command of

our language, and we give the top-level scheduler run that

selects threads from the threadpool to compute in.

Threads are simply suspended computations—represented

using the F monad—that return values. We distinguish the

main thread which returns a value, from forked threads

returning a unit value [16]:

data Thread : Pred SCtx where
forked : ∀[ F (Val unit) ⇒ Thread ]
main : ∀[ F (Val a) ⇒ Thread ]

To take a step in a thread is to unfold one layer of an impure
computation in F, which requires a handler that is able to
respond appropriately to all of the commands:

9

stepf : (∀ {Φ} � (c : Cmd Φ) � M (𝛿 c) Φ) �
∀[ F P ⇒ M (F P) ]

stepf handler (pure px) = return (pure px)
stepf handler (impure (c ⟨ 𝜎 ⟩ 𝜅)) = do

r ⟨ 𝜎 ⟩ 𝜅 ← handler c &⟨ 𝜎 ⟩ 𝜅
return (𝜅 (⊎−comm 𝜎) r)

This operation can easily be lifted from F to Threads:

step : (∀ {Φ} � (c : Cmd Φ) � M (𝛿 c) Φ) �
∀[ Thread⇒ M Thread ]

Finally, we represent the thread pool as a big separating

conjunction over Threads. The implementation of fork thr
is simply to enqueue the thread thr , by appending it to the

pool. Conversely, dequeue returns the frontmost thread that

is not done from the threadpool if there is at least one, or

8
In this interpreter, threads only yield control when they send a command.

More fine-grained concurrency can be achieved by adding a yield command

and manually inserting it where desired, or incorporating it into the bind

of the stage 1 interpreter.

9
The argument handler of step is essentially an empty dependent wand,
from a command to its response.
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returns Emp otherwise. Although the scheduler is unaware

of this, the runtime for a session-typed language will always

have at least the main thread in the threadpool.

enqueue : ∀[ Thread⇒ M Emp ]
dequeue : 𝜖 [ M (Emp ∪ Thread) ]

We implement an asynchronous communication model

with buffered channels, inspired by the buffer threads used

by Fowler et al. [16]. The asynchronous, buffered model is a

good fit for executable semantics, as it is close to practical

implementations. At the same time it avoids the need to

organize a rendezvous between two communicate threads,

as all communication is mediated by the buffer. Type safety of

session-typed languages with asynchronous communication

relies on a number of invariants related to channels:

1. If a channel endpoint is sending (i.e., has a type a ! 𝛽),

then its buffer must be empty.

2. If a channel endpoint is sending then the buffer of the

communicating endpoint must accept those values.

3. If one side of the channel has been closed, then the

other end cannot be sending.

We will represent the state in a way that makes these obser-

vations evident from dependent pattern matching.

Buffers are lists of values waiting to be received at an

endpoint. We write 𝛼 ⇝ 𝛽 (or 𝛽 f 𝛼) for a typed buffer

with two ends: the external endpoint 𝛽 corresponding to

the endpoint of a channel, and an internal endpoint 𝛼 . The
type of the internal endpoint denotes the type of the channel

endpoint after it will have caught up with the buffered values:

data _f_ : STy � STy � Pred SCtx where
emp : (𝛼 f 𝛼) 𝜖
cons : ∀[ Val a ∗ (𝛽 f 𝛾) ⇒ ((a ? 𝛽) f 𝛾) ]

Channels can then be represented as two linked buffers,

or, in case either endpoint has already been closed, a single

buffer. The duality between endpoints of a channel holds

when both sides are completely caught up with any commu-

nication. Consequently, the duality is enforced at the internal
endpoints of the buffers:

data Chan : RTy � Pred SCtx where
both : ∀[ 𝛼 f 𝛽 ∗ 𝛽 −1 ⇝ 𝛾 ⇒ Chan (chanr 𝛼 𝛾) ]
single : ∀[ end⇝ 𝛽 ⇒ Chan (3r 𝛽) ]

The typing of buffers makes the first invariant holds: we

can only have values waiting if the external end is a type

a ? 𝛽 . The duality of the internal endpoints of linked buffers

ensures that the second invariant is satisfied. The third in-

variants holds, because the available constructors for buffers

of type end⇝ 𝛽 restrict 𝛽 to be either also end, or a ? 𝛾 .

We then proceed to instantiate the State monad with a

heterogeneous list of Chans, rather than the list of plain

values used for LTLCref. This yields a monad Cm which can

implement the operations for manipulating the channels:

newch : 𝜖 [ Cm (One (3r 𝛼) ∗ One (3r (𝛼 −1))) ]
recv? : ∀[ One (3r (a ? 𝛽)) ⇒

Cm (Val a ∗ One (3r 𝛽)) ]
send! : ∀[ One (3r (a ! 𝛽)) ⇒ Val a −−∗

Cm (One (3r 𝛽)) ]
closech : ∀[ One (3r end) ⇒ Cm Emp ]

To complete the semantics we pair the state for the thread

pool and the channels, and lift the fork and communication

operations into a monad M . We also nest an Error monad in

this state monad, to account for an exception that indicates

that the thread must be delayed, because there was no value

present in the buffer to be received. We then implement the

operation that dispatches these operations on a command:

handle : ∀ {Φ} � (c : Cmd Φ) � M (𝛿 c) Φ

The top-level scheduling loop picks the first thread from

the threadpool that is not done (using dequeue), tries to take
a step, reschedules, and repeats. If popping a thread fails,

then all threads have computed to a value, and the scheduler

is done. If taking a step fails, then we recover (using orelse)
by rescheduling it and continuing. The operation orelse is
implemented for the state monad wrapped around the error

monad, and resets the state for the recovery computation if

the left-hand side computation fails:

run : 𝜖 [ M Emp ]
run = do

thr? ← dequeue
case thr? of 𝜆 where
(inj1 empty) � return empty
(inj2 thr) � do
empty ← (do

thr ′ ← step handle thr
enqueue thr ′) orelse (enqueue thr)

run

Where the use of fuel to satisfy the termination checker (as

well as the error handling for running out of fuel) has been

ellided.

We have defined the typed representation for a concur-

rent runtime with asynchronous, buffered communication.

Although the typing of the runtime for a session-typed lan-

guage contains some subtleties, the staged interpretation of

this language required no changes at the level of the logic.

The logic and monadic abstractions that we defined scale to

the functional session-typed language LTLCses and indeed

yield interpreters whose clarity is not obscured by explicit

proof terms.

6 Related Work
We discuss prior work on using dependent types to express

linear and relevant scoping and typing of terms, and to prove
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safety of session-typed languages. We also discuss the work

on separation logic that was used to develop PRSAs.

Co-de-Bruijn Representation of Syntax The term

co-de-Bruijn was coined by McBride [26], who exploits this

representation in Agda to ensure that variable shifts in well-

scoped, non-linear lambda terms do not require term traver-

sals. He shows that hereditary substitutions on these terms

become structurally recursive. Rather than working directly

with objects in their relevant context, he works with objects

wrapped in “thinnings” into a larger context, and develops

the structure of these wrapped objects. He defines “relevant

pairs”, which are almost identical to our separating conjunc-

tions for typing contexts, but permit overlap between the

consumption of the left and right projections.

Abel and Kraus [2] describe an encoding of the binding

in the simply-typed lambda calculus terms that is inspired

by the typing of terms in a linearly-typed lambda calcu-

lus. They adapt it to non-linear lambda calculi and use it

to avoid space leaks in interpreters that build function clo-

sures. This is achieved by separating environments along

context separations in the interpreter, thus only capturing

relevant values and avoiding leaks. This separation of the en-

vironment reappears in our linear interpreters in the generic

frame operation of the Reader monad.

Neither Abel and Kraus [2], nor McBride [26] make the

connection with separation logic, or make use of a magic

wand-like connective, which was crucial in typing our func-

tional abstractions.

Intrinsically-Typed Session-Type Semantics The most

closely related work on semantics for session-typed lan-

guages is an intrinsically-typed small-step operational se-

mantics in Agda by Thiemann [37]. The session-typed lan-

guage that he uses is a superset of ours. It includes internal

and external choice operators (with subtyping), a coinduc-

tive definition of session types, and unrestricted types. He

gives a round-robin scheduler for threads, and implements

synchronous communication. The semantics takes the form

of an interruptible abstract machine [15], that operates by

decomposing an expression with its value environment and

evaluation context, into a command for the scheduler. In

addition, he proves that his semantics implements the beta

rule for unrestricted function application, and an eta rule for

pairs. The complete development (minus import statements)

comprises 2890 lines of Agda code. Of those lines, 1652 are

used to define the semantics.

The cited work presents a mechanized semantics of a

session-typed language in an executable, intrinsically typed

style, and identifies the role of both static and dynamic sep-

aration in the type-safety proof. One of the key issues that

loc. cit. identifies, which directly provoked present work, is

the difficulty of managing the separation of the resources.

Particularly, the pervasiveness of proof terms related to the

separation of resources make many of the definitions “te-

dious exercise[s] in resource shuffling”. This includes im-

portant definitions for the semantics, such as the function

that decomposes expressions. Another example is the func-

tion that searches in the thread pool for the send command

that corresponds to a read command.
10
This function com-

prises 50 lines of Agda and its type quantifies over 7 contexts,

related by 3 separation witnesses. The interesting case of

this function, which considers a send command, requires 11

lines of code, 10 of which are reorganizing the six separation

terms that appear in the arguments of function.

We address the complexity and tedium of working with

separated objects by composable abstractions. Each of the

abstractions can be understood separately, making the com-

plexity of the composite manageable. An important part of

this is that we are able to give recognizable types to abstrac-

tions by working in an appropriate logic. Additionally, the

abstractions help considerably to avoid duplication. For ex-

ample, we are able to prove separation rotation lemmas for

all PRSAs using just ⊎−assoc and ⊎−comm, whereas they

are proven separately for both separation of typing contexts

and session contexts in loc. cit. Another good example is his

definition of session context separation, which has 6 con-

structors, baking in the separation on channels. Using our

library, one can define it as the composition of two PRSAs,

reusing our instance for lists. Besides the reuse one gets, this

also simplifies the proofs.

Besides the proof terms, the styles of the semantics also

differ significantly. Whereas a small-step semantics really

shines in a relational setting, it is an indirect way to de-

fine an executable semantics. The computation steps of the

language are hidden within the mechanics of the abstract

machine—i.e., in decomposing expressions, and plugging

values back into evaluation contexts. Some of the clarity is

lost in these indirections that animate the small-step seman-

tics. In our definitional interpreter, this tension between the

small-step nature of concurrency and the functional style

that we require, is resolved by using the free monad, repre-

senting continuations not as syntax, but as Agda functions.

Additionally we avoid searching in evaluation contexts to

find two threads that are both ready to communicate, by

mediating between communicating threads using a buffer.

Monadic Intrinsically-Typed Interpreters Other prior

work is an intrinsically-typed interpreter for Middleweight

Java by Bach Poulsen et al. [6]. They show that monotone

state can be encapsulated and programmed with using a

strong monad in a category of monotone predicates. This

directly inspired the use of monadic strength in this paper.

It is interesting to see that despite the fact monotonicity

and separation are different concepts, both became easier to

10https://github.com/peterthiemann/definitional-session/blob/
1e32d68f027cc3f1da2683a166da482be47fb1d2/src/Session.agda#L353
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Table 1. Line counts of the Agda development

Module LOC

Relation.Ternary.Separation.* 989

Typed.LTLC 50

Typed.LTLCRef 78

Sessions.* 367

* 1484

manipulate by using monadic strength. It would be interest-

ing to investigate builtin support for inserting applications

of strength in programs that use do-notation, not unlike how

arrow-notation is desugared in Haskell [31].

Separation Algebras In the development of our abstrac-

tions and interpreters we have found a lot of inspiration

in existing work on separation logic. We have already men-

tioned the work that contributed to the formulation of PRSAs

in §4.1. For constructing the logic on top of PRSAs we were

inspired by the construction of separation logic in Iris [21],

which defines the type formers and connectives of separa-

tion logic in terms of cameras—i.e., the variant of separation
algebras used in Iris. TheMarket PRSA is inspired by Iris’s

Auth camera [22], which serves a similar purpose: relating

the provider of a resource to its clients. Elements of Auth A
are essentially pairs (x , y) of A’s. The left (authoritative) el-
ement can either be present or not, and cannot be separated.

If it is present, then we must have the inclusion x ⊎ z ≃ y,
for some leftover resource z. Unfortunately, because of the
inclusion evidence, the Auth construction does not transfer

well to the proof-relevant setting. Moreover, to prove the

laws ofAuth A for an arbitrary PRSAA, one needs the higher
structure of A—e.g., composing ⊎−assoc with ⊎−unassoc
is the identity. TheMarket PRSA is a generalization of the

model for counting permissions by Bornat et al. [7].

Linear Types and Separation Logic Whereas we used

ideas from separation logic to write interpreters for linear

languages that are intrinsically type safe, there has has been

prior work on using separation logic to prove type safety in

an extrinsic manner. The most notable development in this

direction is RustBelt [20], where they used the technique of

logical relations in Iris [25] to prove type safety and data race

freedom of the Rust type system and some of its standard

libraries. Contrary to our work, these developments on logi-

cal relations are based on an untyped operational semantics

instead of a well-typed interpreter.

In another line of recent work, researchers developed a sep-

aration logic for proving functional correctness of message-

passing programs called Actris [19]. While Actris is loosely

based on session types, its goal (functional correctness) is

different from our work.

7 Conclusions and Future Work
We presented the development of intrinsically-typed inter-

preters for LTLCref and a session-typed language LTLCses.

The Agda development consists of (1) the library for proof-

relevant separation logic and the described functional ab-

stractions, (2) an interpreter for LTLC and LTLCref, and (3)

the syntax and semantics of LTLCses. The reader-, state-, and

free-monad constructions are part of the library, whereas we

count the communication operations as part of the LTLCses

semantics. The line counts in Table 1, which do not include

module import statements, give an impression of the size of

the library and the case studies.

The interpreters for LTLCref (§4) and LTLCses (§5) meet

the requirements that we outlined in the introduction: the

interpreters are executable and type-safe specifications, and

the semantics is not obscured by explicit proof terms. The

few proof terms that are still present are trivial to fulfill using

the laws of PRSAs, and thus impact the clarity of the seman-

tics less than the partiality present in untyped interpreters.

Using monadic strength to enable programming with the

external bind of these monads, and by using a free monad to

implement concurrency and communication, we managed

to preserve the familiar look of monadic interpreters.

Future Work In this work we focused on the typing and

usage of a monadic interface for effects in the presence of

separation. The implementations of the monadic operations

were of lesser concern, because they are generic and reusable.

These operations have to poke through the abstractions of

its interface (i.e., the logic) and look at the separation wit-

nesses. It would be interesting to further investigate if this

can be improved. It seems that one could avoid some more

manipulation of the separation witnesses if one adopts a

completely point-free programming style. In current day

dependently-typed languages this is not very appealing, be-

cause we cannot use the builtin support for defining func-

tions using dependent pattern matching.

Because the remaining proofs of separation are mechani-

cal, using only the axioms of the PRSAs, it seems likely that

we can use some lightweight automation to fill them in, see

e.g., [24, §9.6]. We would also like to investigate whether

Agda’s builtin rewriting [11] could be used to automatically

eliminate separation witnesses containing an identity 𝜖 .
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