A Direct Semantics for Declarative
Disambiguation of Expression Grammars

LUIS EDUARDO S. AMORIM (Delft University of Technology)
EELCO VISSER (Delft University of Technology)

TU Delft
March 2019

]
TUDelft

I What is the meaning of associativity and priority declarations?

context-free syntax
Exp.Var = ID
Exp.Int = INT
Expr = "(" Expr ")" {bracket}
Exp.Add = Exp "+" Exp {left}
Exp.Sub = Exp "-" Exp {left}
Exp.Mul = Exp "*" Exp {left}
Exp.Minus = "-" Exp
Exp.Lambda = "\\" ID "." Exp
Exp.Inc = Exp "++"
Exp.If = "1f" Exp "then" Exp
Exp.IfElse = "1f" Exp "then" Exp "else" Exp
Exp.Subscript = Exp "[" Exp "]"
Exp.While = "while" Exp "do" Exp "done"
Exp.App = Exp Exp {left}
Exp.Function = "function" PMatch+ {longest-match}
PMatch.Clause = ID "->" Exp
context-free priorities
{Exp.Subscript Exp.Inc} > Exp.App > Exp.Minus >
Exp.Mul > {left: Exp.Add Exp.Sub} > Exp.IfElse >
{Exp.If Exp.Lambda Exp.Function}

Research Questions

What is the meaning of a set of disambiguation rules for a grammar?
- What are the parse trees associated with sentences in the language of the disambiguated grammar?
- independent of particular implementation strategy?

Is a set of disambiguation rules safe?
- Do the disambiguation rules preserve the language of the grammar they disambiguate?
- Is it necessary for disambiguation rules to be safe, or can rules exclude sentences?

Is a set of disambiguation rules complete?

- Do the rules identify at most one parse tree for each sentence in the language?
- Not obvious: ambiguity of CFGs is undecidable

What is the coverage of disambiguation rules?
- What classes of ambiguity do the rules solve?

What is an effective implementation strategy for disambiguation rules?

What is the notational overhead of disambiguation rules?
- More effective than an encoding in the grammar?

Contributions

Expression grammars
- Sub-classes of CFGs with decidable ambiguity
- Extraction of embedded expression grammars

Harmless overlap
- Avoid inherent ambiguities

Subtree exclusion patterns
- Deep priority conflict patterns

Safe and complete
- Preserve language and solve all ambiguities
- Proof: induction on trees under subtree exclusion

Implementation in SDF3
- Transformation to contextual grammars
- Data-dependent parsing

Evaluation on 5 programming languages

This Talk

context-free grammars

[

indirectly recursive distfix (Section 7)

r

overlapping distfix (Section 6.1)

(

~N

distfix (Section 6)

basic (Section 5)

\

(’

prefix (Section 4

\

r

INfix

\(Secticn 3))

\

Subtree Exclusion is Complete

(Inductive case) Assume that ¢, t; € TAQ(G) and that their yields are unique.

(2) f A.C=A & Aisan infix production in G, since each constructor uniquely identifies a
production, that is the only way we can construct the tree t = [A.C =t; & t,]. Now we
need to demonstrate that if t € T9(G) then there is no tree t’ € T9(G) such that t’ # t and
yield(t) = yield(t”). We consider the following cases:

- Ity = [A.C; = t11 ® t12] with yield u ® v and t, = [A.Cy; = <ty1>]| with yields «w»

then t = [AC = [ACl = I11 ® t12] D [ACZ a <1t21l>]] with y1€1d U@ vV D wp,

By totality of disambiguation rules, we have that there is a disambiguation relation
between A.C and A.Cy. If A.C > A.C, then t matches a conflict pattern and therefore
t ¢ T9(G). If A.C; > A.C then t does not match a conflict pattern (since there are no
other disambiguation relations between the productions). The only other tree with the
same yieldist’ = |A.C; = t11 ® |A.C =t & |A.Cy = <ty >]]] € T9(G). However, t’
does have a priority conflict and therefore t’ ¢ T9(G). If the disambiguation relation is
left, right, or non-assoc , the proof works analogously.

36

Grammars and Ambiguity

]
TUDelft

Grammars, Well-Formed Trees, Languages

context-free syntax

Exp.Add = Exp "+" Exp
Exp.Sub = Exp "-" Exp
Exp.Mul = Exp "*" Exp
Exp.Var = 1D

a € 2.
a € T4G)

AC=X1..X, €P(G) t;eT*(G) 1<i

<

n

[AC — tl...tn] c TA(G)

L(G) = {L*(G) | yield(T*(G)),X € V}

LExp.Add = [Exp.Var

ID] + [Exp.Var = ID]]

Parsing

[I(G)(w) = {t € T*(G) | yield(t) = w,X € V}

Derivations

ax=AAp p=Ayp A.C =y € P(G)

(XI)G,B

Lemma 2.5. A parse tree directly corresponds to a derivation,
modulo the order in which productions are applied.

10

Parse Tree to Abstract Syntax Tree

context-free syntax signature
- oo constructors
Exp'édg B EXP ,,+,, EXD Add : Exp * Exp -> Exp
Xp.Sub = EXp - Xp Sub : Exp * Exp -> Exp
Exp.Mul = Exp "*" Exp Mul : Exp * Exp -> Exp
Exp.Var = 1D Var : ID -> Exp
[Exp.Add = [Exp.Add = [Exp.Var = al] * [Exp.Var = b] + [Exp.Var = c]]

Add(Mul(Var("a"), Var("b")), Var("c"))

11

Tree Patterns and Pattern Matching

X eV

X € TP*(G)
A.C = X;..X,, € P(G) t; € TPXi(G)

|A.C = t4...

t,] € TPA(G)

1 <1

<

n

[AC — tl...

a € 2.
M(a, a)

[A.C = t...t,] € TAG)

M([AC — tl...

M([A C = tl

tn], A)
tn] € TYG) [A.C = qi...qn] € TPHG) M(ti, q;)
tn], [A.C = di..

.qn])

1<1<n

12

Tree Patterns and Pattern Matching: Example

[Exp.Add = [Exp.Add = [Exp.Var = ID] + [Exp.Var = ID]] + [Exp.Var

ID]]

[Exp.Add = [Exp.Add = Exp + Exp] + Expl]

13

Ambiguity

context-free syntax
Exp.Add = Exp "+"
Exp.Sub = Exp "-"
Exp.Mul = Exp "*"
d T b T C Exp.Var = 1D

EXp
EXp
EXp

(i) Exp =g Exp + Exp =g a+ Exp = a+Exp+Exp%=> a+ b+ c
m G

(ii) Exp =g Exp + Exp =g Exp+Exp+Exp%:> a+ b+ c
m G

L Exp.Add
[Exp.Add

a + [Exp.Add = b + c]]
[Exp.Add = a + b] + c]

14

Explicit Disambiguation (Brackets)

context-free syntax
Exp.Add = Exp "+" Exp
Exp.Sub = Exp "-" EXxp
Exp.Mul = Exp "*" Exp
Exp.Var = 1D
Exp = "(" Exp ")" {bracket} a * (b T C)
[Exp.Mul = a * [Exp = ([Exp.Add = b + c])]1]

Mul(a, Add(b, c))

15

Disambiguation Filter

F(®) C & for any ® C T(G)

L(G/F) ={w e X" | 3® C T(G), yield(®) = {w}, F(®) = &}

Subtree Exclusion Filter

FO(®) = {t € ® | At' € sub(t) : M(t’,0)}

Trees under Subtree Exclusion

ac -=-Mia,Q)
a € TaQ(G)
AC=X1.. X, €PG) teTg(Gfor1<i<n t=[AC=t..t,] ~M(tQ)

t € T (G)

t € T2 (G) &= t € Tx(G)Ate FO({t})

L(G/F9) = L(G9)

Safety and Completeness

COROLLARY 2.17. A subtree exclusion filter for a set of patterns Q for a grammar G is safe if for
each w € L(G) there is at least one t € TC(G) with yield(t) = w.

COROLLARY 2.18. A subtree exclusion filter for a set of patterns Q for a grammar G is completely
disambiguating if t;, t, € TY(G) = uyield(t)) # yield(t,) V t; = t,

19

Expression Grammars

]
TUDelft

Embedded Expression Grammars

lexical syntax
ID = [a-zA-Z][a-zA-Z0-9]*

INT = [0-9]+
ID = "1f" {reject}
ID = "class" {reject}

lexical restrictions
ID -/- [a-zA-70-9]
INT -/- [0-9]
context-free syntax
Class.Class = "class" ID "{" Mem* "}"
Mem.Method = Type ID "(" Arg* ")" "{" Stmt* "}"

Stmt.If = "1f" "(" Expr ")" Stmt
Stmt.Expr = Expr ;"

Expr.Int = INT

Expr.Var = 1D

Expr = "(" Expr ")" {bracket}

Expr.Add = Expr "+" Expr {left}

Expr.Eq = Expr "==" Expr {non-assoc}
Expr.Call = Expr "." ID "(" {Expr ","}* ")"

context-free priorities
Expr.Call > Expr.Add > Expr.Eqg

21

Classes of Expression Grammars

A.C = LEX
AC=pr A<
AC=A A
AC=p» A
A.C = A <
Basic

AC=» AP ... & A
AC=A D1 ... D A <
AC=A @, ... A & A
AC=rA D1 ... D A <
Distfix

AC=» By @1 ...

AC=By, ® ... ®. B, <

D1 By

A.C = Bo @1 @k Bk

A.C :DB() D1 ... €

D1 B«

Indirectly recursive

22

Expression Grammar Hierarchy

context-free grammars

[

indirectly recursive distfix (Section 7)

r

overlapping distfix (Section 6.1)

(

~N

distfix (Section 6)

~)

basic (Section 5)

prefix (Section 4

infix
\(Secticn 3))

23

Infix Expression Grammars

]
TUDelft

Infix Expression Grammars

context-free syntax

EXp
EXp
EXp
EXp
EXp
EXp
EXp

.Add
.Sub
Mul
. Pow

.EQg
JVar

Exp "+" Exp {left}
Exp "-" Exp {left}
Exp "*" Exp {left}
Exp "A" Exp {right}

= Exp "==" Exp {non-assoc}

ID
"(" Exp ")" {bracket}

context-free priorities
Exp.Pow > Exp.Mul >
{left: Exp.Add Exp.Sub} > Exp.Eq

[Exp.Add = a + [Exp.Sub = b - c]]
[Exp.Sub = [Exp.Add = a + b] - c]
[Exp.Add = [Exp.Add = a + b] + c]
[Exp.Add = a + [Exp.Add = b + c]]
[Exp.Add = a + [Exp.Mul = b *x c]]
[Exp.Mul = [Exp.Add = a + b] * c]

25

Grammar Rewriting

context-free
Exp .Add
Exp.Sub
Exp.Term
Term.Mul
Term. Fact

Factor.Var =

Factor

syntax

= Exp "+" Term

= Exp "-" Term

= Term

= Term "*" Factor
= Factor

ID

"(" Exp ")" {bracket}

20

SDF2 Semantics

A.C; > A.Cy € PR

|A.C; = a|A.Cy, = Fly] € Oc
A.C1 right A.Cy € PR
[A.C1 = [A.C2 = Bly] € Qc
A.C; left A.Cy, € PR
|A.C; = a|A.Cy, = F]] € Og
A.C1 non-assoc A.C, € PR
[A.C1 = [A.C;2 = Bly] € Oc
A.Cq{ non-assoc A.C, € PR
|A.C1 = a|A.Cy, = S]] € Og

Exp.Mul > Exp.Add € PR

[Exp.Mul = [Exp.Add = Exp + Exp] * Exp] € Og

[Exp.Add = a + [Exp.Mul = b * c]]
[Exp.Mul = [Exp.Add = a + b] * c]

Exp.Add left Exp.Add € PR

[Exp.Add = Exp + [Exp.Add = Exp + Expl] € Og

[Exp.Add = [Exp.Add = a + b] + c]
[Exp.Add = a + [Exp.Add = b + c]]

27

Subtree Exclusion is Safe

LEMMA 3.3 (SUBTREE EXCLUSION IS SAFE). Given an infix expression grammar G and a set Q

of priority conflict patterns generated by disambiguation rules (not including non-assoc) for G, if
w € L(G) then there is at € T9(G) such that yield(t) = w.

ProoF. By induction on the length of sentences in L(G).

(Base case) If a is a lexeme then a € TaQ (G) since disambiguation rules do not exclude lexemes.

(Inductive case) Assume that u, v € L(G) and that there are ¢, t, € Tf (G) such that yield(t;) = u,
yield(t,) = v, then there are two cases:

(1) If A.C = « A»is a closed production in G, then <u » € L(G) and [A.C = <« t; »] € TAQ(G),
since there is no priority conflict pattern that matches this tree. (Note that the original
definition of Visser (1997a) does not restrict priority relations to infix productions. Via
Equation 4.2 a priority relation A.C > A.C’ for some production A.C’ = « in the grammar

would lead to rejecting a tree |[A.C = <« |A.C" = ...] »]|, and hence the corresponding
sentence.)

28

Subtree Exclusion is Safe

(Inductive case) Assume that u, v € L(G) and that there are ¢, t, € TAQ (G) such that yield(t;) = u
yield(t,) = v, then there are two cases:

b

(2) f AC =A & Ais an infix production in G, then u ® v = w € L(G). Now we need to
demonstrate that there is a t € T9(G) such that yield(t) = w. By induction v = yield(t;)
and v = yield(t,) such that t;, t, € T9(G). We consider the following cases:

— If t; and t, are lexemes or closed expressions then t = [A.C = t; ® t;] € T9(G) since
there are no disambiguation rules that apply.

29

Subtree Exclusion is Safe

(Inductive case) Assume that u, v € L(G) and that there are ¢, t, € TAQ (G) such that yield(t,) = u,
yield(t,) = v, then there are two cases:

(2) f AC =A & Ais an infix production in G, then u ® v = w € L(G). Now we need to
demonstrate that there is a t € T9(G) such that yield(t) = w. By induction v = yield(t;)
and v = yield(t,) such that t;, t, € T9(G). We consider the following cases:

- It [1 = [ACl =11 &® tlz] with y1€ld U11 V12 and fo = [ACZ — <1t21l>] with y1€1d Wo 1P
Take t = [A.C = |A.C1 = t11 ® t12| & |A.Cy, = «ty1>]|]| as the obvious candidate as
tree for w. If A.C; > A.C then t € T9(G) since it does not match a conflict pattern
(since there are no other disambiguation relations between the productions). On the

other hand, if A.C > A.C; then t matches a conflict pattern and therefore t ¢ T<(G).

However, the reordering t’ = [A.C; = t11 ® [A.C = t1, & [A.C; = «ty1>]]]| has the

same yield and does not have a priority conflict, therefore t’ € T9(G). If t, is a lexeme,

or the disambiguation relation is left, right , the proot works analogously.

30

Subtree Exclusion is Safe

(Inductive case) Assume that u, v € L(G) and that there are ¢, t, € TAQ (G) such that yield(t,) = u,
yield(t,) = v, then there are two cases:

(2) f AC =A & Ais an infix production in G, then u ® v = w € L(G). Now we need to
demonstrate that there is a t € T9(G) such that yield(t) = w. By induction v = yield(t;)
and v = yield(t,) such that t;, t, € T9(G). We consider the following cases:

— 'The proof works analogously when t; is a lexeme or closed expression and t; is an
infix expression.

— When both t; and ¢, are infix expressions we have to consider more cases, but the
reasoning is analogous: by the fact that there is at most one disambiguation relation
between each pair of operators, we can always construct a non-conflicted tree for the
sentence by re-ordering the sub-expressions of t; and t,.

31

Total Set of Disambiguation Rules

Definition 3.4 (Total Set of Disambiguation Rules for Infix Expression Grammars). A set of disam-
biguation rules PR for an infix expression grammar G is total for a non-terminal A:

e If for any pair of productions A.C; = Aop; A € P(G), and A.C, = Aop, A € P(G), such that
A.C; # A.Cy, either A.C;i RA.C; € PRor A.Co RA.C; € PRwhere R € {>,right, left}.
o fAC=AopAc P(G)then A.CR" A.C € PR where R" € {right, left, non-assoc}.

32

Subtree Exclusion is Complete

LEMMA 3.5 (SUBTREE EXCLUSION 1S COMPLETELY DISAMBIGUATING). Given an infix expression
grammar G and a set Q of priority conflict patterns generated by a total set of disambiguation rules
for G, then all trees in T (G) have unique yields. That is, if t;, t, € TC(G) and yield(t,) = yield(t,)
then t; = t».

Proor. By induction on T9(G).

(Base case) If a is a lexeme, then a € TaQ (G) and has a unique yield.

(Inductive case) Assume that t1, 1, € TAQ(G) and that their yields are unique.

(1) If A.C = <« A»is aclosed production in G, thent = [A.C = <« t; »] € TAQ(G), since there
is no priority conflict pattern that matches this tree, and the fact that each constructor
uniquely identifies a production, by uniqueness of ¢, t is also unique.

33

Subtree Exclusion is Complete

LEMMA 3.5 (SUBTREE EXCLUSION 1S COMPLETELY DISAMBIGUATING). Given an infix expression
grammar G and a set Q of priority conflict patterns generated by a total set of disambiguation rules
for G, then all trees in T (G) have unique yields. That is, if t;, t, € TC(G) and yield(t,) = yield(t,)
then t; = t».

(Inductive case) Assume that ¢, 1, € TAQ(G) and that their yields are unique.

(2) f A.C = A & Ais an infix production in G, since each constructor uniquely identifies a
production, that is the only way we can construct the treet = [A.C =t; @ t,]. Now we
need to demonstrate that if + € T9(G) then there is no tree t’ € T9(G) such that ¢’ # t and
yield(t) = yield(t"). We consider the following cases:

34

Subtree Exclusion is Complete

(Inductive case) Assume that t1, 1, € TAQ(G) and that their yields are unique.

(2) f A.C =A & Ais an infix production in G, since each constructor uniquely identifies a
production, that is the only way we can construct the treet = [A.C =t; @ t;]. Now we
need to demonstrate that if t € T9(G) then there is no tree t’ € T9(G) such that t’ # t and
yield(t) = yield(t”). We consider the following cases:

— If t; and t, are lexemes or closed expressions then ¢t € T9(G) since there are no disam-

biguation rules that apply. By uniqueness of t; and ¢, and non-overlap of productions,
there are no other ways to construct a tree with the same yield as ¢.

35

Subtree Exclusion is Complete

(Inductive case) Assume that t{, 1, € TIS(G) and that their yields are unique.

(2) f A.C =A & Ais an infix production in G, since each constructor uniquely identifies a
production, that is the only way we can construct the treet = [A.C =t; @ t;]. Now we
need to demonstrate that if t € T9(G) then there is no tree t’ € T9(G) such that t’ # t and
yield(t) = yield(t”). We consider the following cases:

- If [1 = [AC1 = 11 ® t12] with y1€1d u ® v and [y = [AC2 — <1t21l>] with ylelds wph

then t = [AC — [ACl = 11 ® t12] D [AC2 — <1t21l>]] with Yleld U ® v D wp.

By totality of disambiguation rules, we have that there is a disambiguation relation
between A.C and A.Cy. If A.C > A.C; then t matches a conflict pattern and therefore
t ¢ T9(G). If A.C; > A.C then t does not match a conflict pattern (since there are no
other disambiguation relations between the productions). The only other tree with the
same yieldis t’ = [A.C; = t;1 ® [A.C = t13 ® [A.Cy = <aty;>]]] € T9(G). However, t’
does have a priority conflict and therefore t’ ¢ T9(G). If the disambiguation relation is
left, right, or non-assoc, the proof works analogously.

36

Subtree Exclusion is Complete

(Inductive case) Assume that t{, 1, € TIS(G) and that their yields are unique.

(2) f A.C =A & Ais an infix production in G, since each constructor uniquely identifies a
production, that is the only way we can construct the treet = [A.C =t; @ t;]. Now we
need to demonstrate that if t € T9(G) then there is no tree t’ € T9(G) such that t’ # t and
yield(t) = yield(t”). We consider the following cases:

— The proof works analogously when t; is a lexeme or a closed expression and ¢, is an
infix expression.

— When both #; and t, are infix expressions, we have to consider more cases since all
combinations of disambiguation relations between the three productions need to be
considered, but the reasoning is the same; by totality there are relations between all
three productions, and therefore at most one tree is selected.

37

Disambiguation for Infix Expression is Safe and Complete

THEOREM 3.6. Disambiguation of an infix expression grammar using a total set of disambiguation
rules (not including non-assoc) is safe and completely disambiguating.

Proor. Assume that G is an infix expression grammar and R a total set of disambiguation rules
for G. Let Q be the set of priority conflict patterns for R according to Definition 3.2. By Lemma 3.3
we have that if w € L(G) then there is a t € T9(G) such that yield(t) = w. By Corollary 2.17 we
have that F€ is a safe disambiguation filter. By Lemma 3.5 we have that if ¢, ¢, € T9(G) then
yield(t;) # yield(t;) V t; = t5. By Corollary 2.18 we have that F€ is completely disambiguating.

38

Deep Priority Conflicts

]
TUDelft

Prefix Expression Grammars

context-free syntax (1) [Exp.Minus = - [Exp.Add = a + b]]
Exp . Add = Exp "+" Exp {left} (2) [Exp.Add = [Exp.Minus = - a] + b]
Exp.Lambda = "\\" ID "." Exp
Exp.M1nus "-" Exp
Exp.Var = ID
Exp = "(" Exp ")" {bracket}

context-free priorities
Exp.Minus > Exp.Add > Exp.Lambda (3) [Exp.Add = a + [Exp.Minus = - b]]

Exp.Minus > Exp.Add € PR
[Exp.Minus = - [Exp.Add = Exp + Expl] € Og

40

I SDF2 Semantics is Unsafe for Prefix Expression Grammars

context-free syntax
Exp .Add = Exp "+" Exp {left}

Exp.Lambda = "\\" ID "." EXp| 4) [Exp.Add = [Exp.Lambda = \ x . a] + b]

Exp.Minus =" Exp j)
Exp.Var = ID (5) [Exp.Lambda = \ x . [Exp.Add = a + b]]
Exp = "(" Exp ")" {bracket}

context-free priorities
Exp.Minus > Exp.Add > Exp.Lambda

(6) [Exp.Add = a + [Exp.Lambda = \ x . b]]

Exp.Add > Exp.Lambda € PR

[Exp.Add = [Exp.Lambda = \ ID . Exp] + Exp] € Qg
Exp.Add > Exp.Lambda € PR

[Exp.Add = Exp + [Exp.Lambda = \ ID . Expl] € Qg

I Safe Semantics

context-free syntax A.Ci > A.Cy € PR
Exp.Add = Exp "+" Exp {left}
Exp.Lambda = "\\" ID "." Exp |A.C1 = [A.C, = aAly]| € ok
Exp.Minus = "-" Exp A.C; > A.C, € PR
Exp.Var = ID
Exp = "(" Exp ")" {bracket} |A.Cy = alA.Cy = Ay|] € safe
context-free priorities
Exp.Minus > Exp.Add > Exp.Lambda

(4) [Exp.Add = [Exp.Lambda = \ x . al] + b]
(5) [Exp.Lambda = \ x . [Exp.Add = a + b]]

(6) [Exp.Add = a + [Exp.Lambda = \ x . b]]

Exp.Add > Exp.Lambda € PR

[Exp.Add = [Exp.Lambda = \ ID . Exp] + Exp] € Q

Safe Semantics for Shallow Conflicts

A.Ci > A.Cy, € PR
[AC1 — [AC2 — C(A]}/] c safe
A.Cy > A.Cy) € PR
[ACl = C([A.Cz = A}/]] c safe
A.Ci right A.Cy, € PR
[ACl — [ACZ — AﬂzA]ﬁlA] c safe
A.Cy left A.C, € PR
[A.Cy = AP1[A.C, = AP, Al € Qe
A.C1 non-assoc A.Cy € PR
[A.C; = ABI[A.Cy = ABA]] € 0¥
A.Cq{ non-assoc A.Cy € PR
[A.Cy = [A.C, = ABAlp1A] € QY
A.Cq non-nested A.C, € PR —(a; =" Ay)
[AC1 = [ACZ = (XzA]] c Q(‘;/V

Deep Pri

ority Conflicts

context-free syntax

Exp.Add = Exp "+" Exp {left}
Exp.Lambda = "\\" ID "." Exp
Exp.M1nus "-" Exp

Exp.Var = ID

Exp = "(" Exp ")" {bracket}

context-free priorities
Exp.Minus > Exp.Add > Exp.Lambda

a+ \Xx. b+ ¢

Exp
(DO
Exp
OO

44

Rightmost Deep Matching

VO<i<n:M"™t,q;)
D™([A.C = ty...tn],[A.C = q1...qn])

M(t, q)
M™(t, q)

M (tn, q)
MM™([A.C = t;...t,], q)

t: [Exp.Add = [Exp.Add = a + [Exp.Lambda = \ x .

q: [Exp.Add = [Exp.Lambda = \ ID . Expl + Expl]

bl] + c]

45

Rightmost Deep Matching

t: [Exp.Add = [Exp.Add = a + [Exp.Lambda = \ x . b]l] + c]
q: [Exp.Add = [Exp.Lambda = \ ID . Exp] + Exp]

M ([Exp.Lambda = \ x . b], [Exp.Lambda = \ ID . Exp])

M™™([Exp.Add = a + [Exp.Lambda = \ x . b]],[Exp.Lambda = \ ID . Exp])

Drm(t, q)

Rightmost Deep Priority Conflict Pattern

Exp Exp
(DO o) (D
(D | OOk
DOE (W ()

A.C;y > A.Cy € PR

[A.C) = [A.C, = aAly] € O°Y°
A.C, > A.C, € PR

[AC1 - (X[A.Cz = A}/]] c safe

AC, > AC, € PR a#¢ Ap

[ACZ = [AC1 = (XA])/] S an

47

1,!U Delft

Etc.

48

