A Direct Semantics for Declarative Disambiguation of Expression Grammars

LUIS EDUARDO S. AMORIM (Delft University of Technology) EELCO VISSER (Delft University of Technology)

TU Delft March 2019

What is the meaning of associativity and priority declarations?

synta	ıx	
=	ID	
=	INT	
=	"("	Ex
=	Exp	"+
=	Exp	"-
=	Exp	"*
=	"-"	Ex
=	"\\'	' I
=	Exp	"+
=	"if'	' E:
=	"if'	' E:
ipt =	Exp	"Ε
=	"whi	le
=	Exp	Ex
on =	"fur	nct
use =	ID '	'->
prior	itie	es
ript E	xp.]	Inc
[left:	Exp	D. A
o.Lamb	oda E	Ехр
	<pre>synta = = = = = = = = ipt = = = = = = = = = = = = = = = = = = =</pre>	<pre>syntax = ID = INT = "(" = Exp = Exp = Exp = "-" = "\\' = "\\' = Exp = "if' = "if' = "if' = "if' = "if' = "if' = "if' = "if' = Exp = "whi = Exp = "whi = Exp = Tur se = ID ' prioritie for Exp.] {left: Exp p.Lambda E</pre>

```
pr ")" {bracket}
" Exp {left}
" Exp {left}
" Exp {left}
р
D "." Exp
+"
xp "then" Exp
xp "then" Exp "else" Exp
" Exp "]"
" Exp "do" Exp "done"
p {left}
ion" PMatch+ {longest-match}
Exp
> Exp.App > Exp.Minus >
dd Exp.Sub} > Exp.IfElse >
.Function}
```


Research Questions

What is the meaning of a set of disambiguation rules for a grammar?

- independent of particular implementation strategy?

Is a set of disambiguation rules safe?

- Do the disambiguation rules preserve the language of the grammar they disambiguate?
- Is it necessary for disambiguation rules to be safe, or can rules exclude sentences?

Is a set of disambiguation rules complete?

- Do the rules identify at most one parse tree for each sentence in the language?
- Not obvious: ambiguity of CFGs is undecidable

What is the coverage of disambiguation rules?

- What classes of ambiguity do the rules solve?

What is an effective implementation strategy for disambiguation rules?

What is the notational overhead of disambiguation rules?

- More effective than an encoding in the grammar?

- What are the parse trees associated with sentences in the language of the disambiguated grammar?

Contributions

Expression grammars

- Sub-classes of CFGs with decidable ambiguity
- Extraction of embedded expression grammars

Harmless overlap

- Avoid inherent ambiguities

Subtree exclusion patterns

- Deep priority conflict patterns

Safe and complete

- Preserve language and solve all ambiguities
- Proof: induction on trees under subtree exclusion

Implementation in SDF3

- Transformation to contextual grammars
- Data-dependent parsing

Evaluation on 5 programming languages

This Talk

context-free grammars

- indirectly recursive distfix (Section 7)
 - overlapping distfix (Section 6.1)

distfix (Section 6	6)
--------------------	----

basic (Section 5)

prefix (Section 4)

infix (Section 3)

(Inductive case) Assume that $t_1, t_2 \in T_A^Q(G)$ and that their yields are unique.

(2) If $A.C = A \oplus A$ is an infix production in *G*, since each constructor uniquely identifies a production, that is the only way we can construct the tree $t = [A.C = t_1 \oplus t_2]$. Now we need to demonstrate that if $t \in T^Q(G)$ then there is no tree $t' \in T^Q(G)$ such that $t' \neq t$ and yield(t) = yield(t'). We consider the following cases:

- If $t_1 = [A.C_1 = t_{11} \otimes t_{12}]$ with yield $u \otimes v$ and $t_2 = [A.C_2 = \triangleleft t_{21} \triangleright]$ with yields $\triangleleft w \triangleright$ then $t = [A.C = [A.C_1 = t_{11} \otimes t_{12}] \oplus [A.C_2 = \triangleleft t_{21} \triangleright]]$ with yield $u \otimes v \oplus \triangleleft w \triangleright$. By totality of disambiguation rules, we have that there is a disambiguation relation between A.C and $A.C_1$. If $A.C > A.C_1$ then t matches a conflict pattern and therefore $t \notin T^Q(G)$. If $A.C_1 > A.C$ then t does not match a conflict pattern (since there are no other disambiguation relations between the productions). The only other tree with the same yield is $t' = [A.C_1 = t_{11} \otimes [A.C = t_{12} \oplus [A.C_2 = \triangleleft t_{21} \triangleright]]] \in T^Q(G)$. However, t'*does* have a priority conflict and therefore $t' \notin T^Q(G)$. If the disambiguation relation is left, right, or non-assoc, the proof works analogously.

Grammars and Ambiguity

Grammars, Well-Formed Trees, Languages

[Exp.Add = [Exp.Var = ID] + [Exp.Var = ID]]

 $a \in \Sigma$ $a \in T^a(G)$

$$= X_1 \dots X_n \in P(G) \quad t_i \in T^{X_i}(G) \quad 1 \le i \le [A.C = t_1 \dots t_n] \in T^A(G)$$

$$= \{L^X(G) \mid yield(T^X(G)), X \in V\}$$

$\Pi(G)(w) = \{t \in T^X(G) \mid yield(t) = w, X \in V\}$

Parsing

$$\frac{\alpha = \lambda A \rho \qquad \beta = \lambda \gamma}{\alpha = \alpha}$$

Lemma 2.5. A parse tree directly corresponds to a derivation, modulo the order in which productions are applied.

Derivations

 $\gamma \rho \quad A.C = \gamma \in P(G)$ $\Rightarrow_G \beta$

10

Parse Tree to Abstract Syntax Tree

[Exp.Add = [Exp.Add = [Exp.Var = a] * [Exp.Var = b] + [Exp.Var = c]]

Add(Mul(Var("a"), Var("b")), Var("c"))

Tree Patterns and Pattern Matching

 $X \in V$ $X \in TP^X(G)$ $A.C = X_1...X_n \in P(G) \quad t_i \in TP^{X_i}(G) \quad 1 \le i \le n$ $[A.C = t_1...t_n] \in TP^A(G)$ $a \in \Sigma$ $\mathcal{M}(a, a)$ $[A.C = t_1...t_n] \in T^A(G)$ $\mathcal{M}([A.C = t_1...t_n], A)$ $[A.C = t_1...t_n] \in T^A(G) \quad [A.C = q_1...q_n] \in TP^A(G) \quad \mathcal{M}(t_i, q_i) \quad 1 \le i \le n$ $\mathcal{M}([A.C = t_1...t_n], [A.C = q_1...q_n])$

Tree Patterns and Pattern Matching: Example

[Exp.Add = [Exp.Add = [Exp.Var = ID] + [Exp.Var = ID]] + [Exp.Var = ID]]

[Exp.Add = [Exp.Add = Exp + Exp] + Exp]

Ambiguity

C

(i) $Exp \Rightarrow_G Exp + Exp \Rightarrow_G a + Exp$ (ii) $Exp \Rightarrow_G Exp + Exp \Rightarrow_G Exp +$

[Exp.Add = a + [Exp.A][Exp.Add = [Exp.Add =

context-free syntax Exp.Add = Exp "+" ExpExp.Sub = Exp "-" ExpExp.Mul = Exp "*" ExpExp.Var = ID

$$\underline{p} \Rightarrow_{G} a + Exp + Exp \stackrel{*}{\Longrightarrow}_{lm \ G} a + b + c$$
$$Exp + Exp \stackrel{*}{\Longrightarrow}_{lm \ G} a + b + c$$

14

Explicit Disambiguation (Brackets)

[Exp = ([Exp.Add = b + c])]]

Disambiguation Filter

$F(\Phi) \subseteq \Phi$ for any $\Phi \subseteq T(G)$

$L(G/F) = \{ w \in \Sigma^* \mid \exists \Phi \subseteq T(G), yield(\Phi) = \{ w \}, F(\Phi) = \Phi \}$

Subtree Exclusion Filter

$F^Q(\Phi) = \{t \in \Phi \mid \nexists t' \in sub(t) : \mathcal{M}(t', Q)\}$

17

Trees under Subtree Exclusion

 $a \in \Sigma$ $a \in$ $A.C = X_1...X_n \in P(G)$ $t_i \in T_{X_i}^Q(G)$ for $t \in T^{\infty}_{A}(G)$

$$\neg \mathcal{M}(a, Q)$$
$$\equiv T_a^Q(G)$$

$$r \ 1 \le i \le n \quad t = [A.C = t_1...t_n] \quad \neg \mathcal{M}(t)$$

$$\in T_X(G) \wedge t \in F^Q(\{t\})$$

$$^{2}) = L(G^{Q})$$

Safety and Completeness

each $w \in L(G)$ there is at least one $t \in T^Q(G)$ with yield(t) = w.

disambiguating if $t_1, t_2 \in T^Q(G) \implies yield(t_1) \neq yield(t_2) \lor t_1 = t_2$

COROLLARY 2.17. A subtree exclusion filter for a set of patterns Q for a grammar G is safe if for

COROLLARY 2.18. A subtree exclusion filter for a set of patterns Q for a grammar G is completely

Expression Grammars

Embedded Expression Grammars

```
lexical syntax
 ID = [a-zA-Z][a-zA-Z0-9]*
 INT = [0-9] +
 ID = "if" {reject}
 ID = "class" {reject}
lexical restrictions
 ID -/- [a-zA-Z0-9]
 INT -/- [0-9]
context-free syntax
 Class.Class = "class" ID "{" Mem* "}"
 Mem.Method = Type ID "(" Arg* ")" "{" Stmt* "}"
 Stmt.If = "if" "(" Expr ")" Stmt
 Stmt.Expr = Expr ";"
 Expr.Int = INT
 Expr.Var = ID
 Expr = "(" Expr ")" {bracket}
Expr.Add = Expr "+" Expr {left}
              = Expr "==" Expr {non-assoc}
  Expr.Eq
 Expr.Call = Expr "." ID "(" {Expr ","}* ")"
context-free priorities
 Expr.Call > Expr.Add > Expr.Eq
```


Classes of Expression Grammars

$$A.C = LEX$$
$$A.C = \triangleright A \triangleleft$$
$$A.C = A \oplus A$$
$$A.C = \triangleright A$$
$$A.C = \land \checkmark$$

Basic

$$A.C = \blacktriangleright A \oplus_1$$
$$A.C = A \oplus_1 \dots$$
$$A.C = A \oplus_1 \dots$$
$$A.C = \triangleright A \oplus_1 \dots$$

Distfix

 $\begin{array}{c} \dots \oplus_k A \\ \oplus_k A \\ A \\ \oplus_k A \\ \dots \\ \oplus_k A \\ \end{array}$

$$A.C = \triangleright B_0 \oplus_1 \dots \oplus_k B_k$$
$$A.C = B_0 \oplus_1 \dots \oplus_k B_k$$
$$A.C = B_0 \oplus_1 \dots \oplus_k B_k$$
$$A.C = \triangleright B_0 \oplus_1 \dots \oplus_k B_k$$

Indirectly recursive

Expression Grammar Hierarchy

context-free grammars

- indirectly recursive distfix (Section 7)
 - overlapping distfix (Section 6.1)

distfix	(Section	6)
---------	----------	----

basic (Section 5)

prefix (Section 4)

infix (Section 3)

Infix Expression Grammars

Infix Expression Grammars

context-free syntax $Exp.Add = Exp "+" Exp {left}$ $Exp.Sub = Exp "-" Exp {left}$ $Exp.Mul = Exp "*" Exp {left}$ $Exp.Pow = Exp "^" Exp {right}$ $Exp.Eq = Exp "==" Exp {non-assoc}$ Exp.Var = ID $Exp = "(" Exp ")" \{bracket\}$ context-free priorities Exp.Pow > Exp.Mul >{left: Exp.Add Exp.Sub} > Exp.Eq

[Exp.Add = a + [Exp.Sub = b - c]][Exp.Sub = [Exp.Add = a + b] - c]

[Exp.Add = [Exp.Add = a + b] + c][Exp.Add = a + [Exp.Add = b + c]]

[Exp.Add = a + [Exp.Mul = b * c]]
[Exp.Mul = [Exp.Add = a + b] * c]

Grammar Rewriting

context-free	sy	/r
Exp.Add	=	E
Exp.Sub	=	E
Exp.Term	=	٦
Term.Mul	=	٦
Term.Fact	=	F
Factor.Var	=]
Factor	=	1

```
ntax
Exp "+" Term
Exp "-" Term
Term
Term "*" Factor
Factor
ID
"(" Exp ")" {bracket}
```


 $A.C_1 > A.C_2 \in PR$ [Exp. $[A.C_1 = \alpha[A.C_2 = \beta]\gamma] \in Q_G$ $A.C_1 \text{ right } A.C_2 \in PR$ [E× $[A.C_1 = [A.C_2 = \beta]\gamma] \in Q_G$ [Ex $A.C_1$ left $A.C_2 \in PR$ $[A.C_1 = \alpha[A.C_2 = \beta]] \in Q_G$ $A.C_1$ non-assoc $A.C_2 \in PR$ [Exp./ $[A.C_1 = [A.C_2 = \beta]\gamma] \in Q_G$ ΓЕ $A.C_1$ non-assoc $A.C_2 \in PR$ $[A.C_1 = \alpha[A.C_2 = \beta]] \in Q_G$ [E

SDF2 Semantics

$Exp.Mul > Exp.Add \in PR$	
Mul = [Exp.Add = Exp + Exp] ★ Exp] ∈	•
<pre><p.add *="" +="" =="" [exp.mul="b" a="" c]<="" pre=""></p.add></pre>]
<pre><p.mul *="" +="" =="" [exp.add="a" b]="" d<="" pre=""></p.mul></pre>	2

Exp.Add left Exp.Add $\in PR$
$Add = Exp + [Exp.Add = Exp + Exp]] \in$
<pre>[xp.Add = [Exp.Add = a + b] + c]</pre>
xp.Add = a + [Exp.Add = b + c]

 $w \in L(G)$ then there is a $t \in T^Q(G)$ such that yield(t) = w.

PROOF. By induction on the length of sentences in L(G).

(Base case) If a is a lexeme then $a \in T_a^Q(G)$ since disambiguation rules do not exclude lexemes.

(Inductive case) Assume that $u, v \in L(G)$ and that there are $t_1, t_2 \in T_A^Q(G)$ such that $yield(t_1) = u$, $yield(t_2) = v$, then there are two cases:

sentence.)

LEMMA 3.3 (SUBTREE EXCLUSION IS SAFE). Given an infix expression grammar G and a set Qof priority conflict patterns generated by disambiguation rules (not including non-assoc) for G, if

(1) If $A.C = \triangleleft A \triangleright$ is a closed production in *G*, then $\triangleleft u \triangleright \in L(G)$ and $[A.C = \triangleleft t_1 \triangleright] \in T_A^Q(G)$, since there is no priority conflict pattern that matches this tree. (Note that the original definition of Visser (1997a) does not restrict priority relations to infix productions. Via Equation 4.2 a priority relation A.C > A.C' for some production $A.C' = \alpha$ in the grammar would lead to rejecting a tree $[A.C = \triangleleft [A.C' = ...] \triangleright]$, and hence the corresponding

 $yield(t_2) = v$, then there are two cases:

(2) If $A \cdot C = A \oplus A$ is an infix production in G, then $u \oplus v = w \in L(G)$. Now we need to demonstrate that there is a $t \in T^Q(G)$ such that yield(t) = w. By induction $v = yield(t_1)$ and $v = yield(t_2)$ such that $t_1, t_2 \in T^Q(G)$. We consider the following cases:

there are no disambiguation rules that apply.

(Inductive case) Assume that $u, v \in L(G)$ and that there are $t_1, t_2 \in T_A^Q(G)$ such that $yield(t_1) = u$,

- If t_1 and t_2 are lexemes or closed expressions then $t = [A \cdot C = t_1 \oplus t_2] \in T^Q(G)$ since

 $yield(t_2) = v$, then there are two cases:

(2) If $A \cdot C = A \oplus A$ is an infix production in G, then $u \oplus v = w \in L(G)$. Now we need to demonstrate that there is a $t \in T^Q(G)$ such that yield(t) = w. By induction $v = yield(t_1)$ and $v = yield(t_2)$ such that $t_1, t_2 \in T^Q(G)$. We consider the following cases:

- If $t_1 = [A.C_1 = t_{11} \otimes t_{12}]$ with yield $u_{11} \otimes v_{12}$ and $t_2 = [A.C_2 = \langle t_{21} \rangle]$ with yield $\langle w_{21} \rangle$. Take $t = [A.C] = [A.C_1] = t_{11} \otimes t_{12} \oplus [A.C_2] = \langle t_{21} \rangle$ as the obvious candidate as tree for w. If $A \cdot C_1 > A \cdot C$ then $t \in T^Q(G)$ since it does not match a conflict pattern (since there are no other disambiguation relations between the productions). On the other hand, if $A.C > A.C_1$ then t matches a conflict pattern and therefore $t \notin T^Q(G)$. However, the reordering $t' = [A.C_1 = t_{11} \otimes [A.C = t_{12} \oplus [A.C_2 = \triangleleft t_{21} \triangleright]]$ has the same yield and does *not* have a priority conflict, therefore $t' \in T^Q(G)$. If t_2 is a lexeme, or the disambiguation relation is left, right, the proof works analogously.

(Inductive case) Assume that $u, v \in L(G)$ and that there are $t_1, t_2 \in T_A^Q(G)$ such that $yield(t_1) = u$,

 $yield(t_2) = v$, then there are two cases:

(2) If $A \cdot C = A \oplus A$ is an infix production in G, then $u \oplus v = w \in L(G)$. Now we need to demonstrate that there is a $t \in T^Q(G)$ such that yield(t) = w. By induction $v = yield(t_1)$ and $v = yield(t_2)$ such that $t_1, t_2 \in T^Q(G)$. We consider the following cases:

- infix expression.
- sentence by re-ordering the sub-expressions of t_1 and t_2 .

(Inductive case) Assume that $u, v \in L(G)$ and that there are $t_1, t_2 \in T_A^Q(G)$ such that $yield(t_1) = u$,

- The proof works analogously when t_1 is a lexeme or closed expression and t_2 is an

- When both t_1 and t_2 are infix expressions we have to consider more cases, but the reasoning is analogous: by the fact that there is at most one disambiguation relation between each pair of operators, we can always construct a non-conflicted tree for the

31

Total Set of Disambiguation Rules

Definition 3.4 (Total Set of Disambiguation Rules for Infix Expression Grammars). A set of disambiguation rules *PR* for an infix expression grammar *G* is *total* for a non-terminal *A*:

• If for any pair of productions $A \cdot C_1 = A \circ p_1 A \in P(G)$, and $A \cdot C_2 = A \circ p_2 A \in P(G)$, such that $A.C_1 \neq A.C_2$, either $A.C_1 R A.C_2 \in PR$ or $A.C_2 R A.C_1 \in PR$ where $R \in \{>, right, left\}$. • If $A.C = A \text{ op } A \in P(G)$ then $A.C R' A.C \in PR$ where $R' \in \{right, left, non-assoc\}$.

LEMMA 3.5 (SUBTREE EXCLUSION IS COMPLETELY DISAMBIGUATING). Given an infix expression grammar G and a set Q of priority conflict patterns generated by a total set of disambiguation rules [for G, then all trees in $T^Q(G)$ have unique yields. That is, if $t_1, t_2 \in T^Q(G)$ and $yield(t_1) = yield(t_2)$ *then* $t_1 = t_2$.

PROOF. By induction on $T^Q(G)$.

(Base case) If a is a lexeme, then $a \in T_a^Q(G)$ and has a unique yield.

(Inductive case) Assume that $t_1, t_2 \in T_A^Q(G)$ and that their yields are unique.

(1) If $A.C = \triangleleft A \triangleright$ is a closed production in G, then $t = [A.C = \triangleleft t_1 \triangleright] \in T^Q_A(G)$, since there is no priority conflict pattern that matches this tree, and the fact that each constructor uniquely identifies a production, by uniqueness of t_1 , t is also unique.

LEMMA 3.5 (SUBTREE EXCLUSION IS COMPLETELY DISAMBIGUATING). Given an infix expression grammar G and a set Q of priority conflict patterns generated by a total set of disambiguation rules for G, then all trees in $T^Q(G)$ have unique yields. That is, if $t_1, t_2 \in T^Q(G)$ and yield $(t_1) = yield(t_2)$ then $t_1 = t_2$.

(Inductive case) Assume that $t_1, t_2 \in T_A^Q(G)$ and that their yields are unique.

(2) If $A.C = A \oplus A$ is an infix production in G, since each constructor uniquely identifies a production, that is the only way we can construct the tree $t = [A.C = t_1 \oplus t_2]$. Now we need to demonstrate that if $t \in T^Q(G)$ then there is no tree $t' \in T^Q(G)$ such that $t' \neq t$ and yield(t) = yield(t'). We consider the following cases:

(Inductive case) Assume that $t_1, t_2 \in T^Q_A(G)$ and that their yields are unique.

yield(t) = yield(t'). We consider the following cases:

(2) If $A = A \oplus A$ is an infix production in G, since each constructor uniquely identifies a production, that is the only way we can construct the tree $t = [A.C = t_1 \oplus t_2]$. Now we need to demonstrate that if $t \in T^Q(G)$ then there is no tree $t' \in T^Q(G)$ such that $t' \neq t$ and

- If t_1 and t_2 are lexemes or closed expressions then $t \in T^Q(G)$ since there are no disambiguation rules that apply. By uniqueness of t_1 and t_2 and non-overlap of productions, there are no other ways to construct a tree with the same yield as *t*.

(Inductive case) Assume that $t_1, t_2 \in T^Q_A(G)$ and that their yields are unique.

(2) If $A = A \oplus A$ is an infix production in G, since each constructor uniquely identifies a production, that is the only way we can construct the tree $t = [A.C = t_1 \oplus t_2]$. Now we need to demonstrate that if $t \in T^Q(G)$ then there is no tree $t' \in T^Q(G)$ such that $t' \neq t$ and yield(t) = yield(t'). We consider the following cases:

- If $t_1 = [A.C_1 = t_{11} \otimes t_{12}]$ with yield $u \otimes v$ and $t_2 = [A.C_2 = \langle t_{21} \rangle]$ with yields $\langle w \rangle$ then $t = [A.C = [A.C_1 = t_{11} \otimes t_{12}] \oplus [A.C_2 = \triangleleft t_{21} \triangleright]]$ with yield $u \otimes v \oplus \triangleleft w \triangleright$. By totality of disambiguation rules, we have that there is a disambiguation relation between A.C and A.C₁. If $A.C > A.C_1$ then t matches a conflict pattern and therefore $t \notin T^Q(G)$. If $A \cdot C_1 > A \cdot C$ then t does not match a conflict pattern (since there are no other disambiguation relations between the productions). The only other tree with the same yield is $t' = [A.C_1 = t_{11} \otimes [A.C = t_{12} \oplus [A.C_2 = \langle t_{21} \rangle]] \in T^Q(G)$. However, t'does have a priority conflict and therefore $t' \notin T^Q(G)$. If the disambiguation relation is left, right, or non-assoc, the proof works analogously.

(Inductive case) Assume that $t_1, t_2 \in T^Q_A(G)$ and that their yields are unique.

(2) If $A \cdot C = A \oplus A$ is an infix production in G, since each constructor uniquely identifies a production, that is the only way we can construct the tree $t = [A.C = t_1 \oplus t_2]$. Now we need to demonstrate that if $t \in T^Q(G)$ then there is no tree $t' \in T^Q(G)$ such that $t' \neq t$ and yield(t) = yield(t'). We consider the following cases:

- infix expression.
- three productions, and therefore at most one tree is selected.

- The proof works analogously when t_1 is a lexeme or a closed expression and t_2 is an

- When both t_1 and t_2 are infix expressions, we have to consider more cases since all combinations of disambiguation relations between the three productions need to be considered, but the reasoning is the same; by totality there are relations between all

Disambiguation for Infix Expression is Safe and Complete

Тнеокем 3.6. Disambiguation of an infix expression grammar using a total set of disambiguation rules (not including non-assoc) is safe and completely disambiguating.

PROOF. Assume that *G* is an infix expression grammar and *R* a total set of disambiguation rules for *G*. Let *Q* be the set of priority conflict patterns for *R* according to Definition 3.2. By Lemma 3.3 we have that if $w \in L(G)$ then there is a $t \in T^Q(G)$ such that yield(t) = w. By Corollary 2.17 we have that F^Q is a safe disambiguation filter. By Lemma 3.5 we have that if $t_1, t_2 \in T^Q(G)$ then $yield(t_1) \neq yield(t_2) \lor t_1 = t_2$. By Corollary 2.18 we have that F^Q is completely disambiguating. \Box

Deep Priority Conflicts

context-free syntax $Exp.Add = Exp "+" Exp {left}$ $Exp.Lambda = " \setminus " ID "." Exp$ Exp.Minus = "-" ExpExp.Var = IDExp = "(" Exp ")" {bracket} context-free priorities Exp.Minus > Exp.Add > Exp.Lambda

$> Exp.Add \in PR$ $[Exp.Add = Exp + Exp]] \in Q_G$

SDF2 Semantics is Unsafe for Prefix Expression Grammars

		<pre>Exp.Add > Exp.Lambda</pre>	E
[Exp.Add	=	$[Exp.Lambda = \setminus ID . E$	E>
		<pre>Exp.Add > Exp.Lambda</pre>	E
[Exp.Add	=	Exp + [Exp.Lambda = \]

(4) $[Exp.Add = [Exp.Lambda = \setminus x . a] + b]$ (5) $[Exp.Lambda = \setminus x . [Exp.Add = a + b]]$

(6) $[Exp.Add = a + [Exp.Lambda = \setminus x . b]]$

$$PR$$

$$p] + Exp] ∈ Q_G$$

$$PR$$

$$D . Exp]] ∈ Q_G$$

context-free syntax $Exp.Add = Exp "+" Exp {left}$ $Exp.Lambda = " \ ID "." Exp$ Exp.Minus = "-" ExpExp.Var = IDExp = "(" Exp ")" {bracket} context-free priorities Exp.Minus > Exp.Add > Exp.Lambda (4) $[Exp.Add = [Exp.Lambda = \setminus x]$. (5) [Exp.Lambda = $\setminus x$. [Exp.Add (6) [Exp.Add = a + [Exp.Lambda =

Safe Semantics

$$\frac{A.C_1 > A.C_2 \in PR}{[A.C_1 = [A.C_2 = \alpha A]\gamma] \in Q_G^{safe}} \\
\frac{A.C_1 > A.C_2 \in PR}{[A.C_1 = \alpha[A.C_2 = A\gamma]] \in Q_G^{safe}} \\
\frac{a] + b]}{[A.C_1 = \alpha[A.C_2 = A\gamma]] \in Q_G^{safe}} \\
\frac{a] + b]}{[A.C_1 = \alpha[A.C_2 = A\gamma]] \in Q_G^{safe}} \\
\frac{a] + b]}{[A.C_1 = \alpha[A.C_2 = A\gamma]] \in Q_G^{safe}} \\
\frac{a] + b]}{[A.C_1 = \alpha[A.C_2 = A\gamma]] \in Q_G^{safe}} \\
\frac{a] + b]}{[A.C_1 = \alpha[A.C_2 = A\gamma]] \in Q_G^{safe}} \\
\frac{a] + b]}{[A.C_1 = \alpha[A.C_2 = A\gamma]] \in Q_G^{safe}} \\
\frac{a] + b]}{[A.C_1 = \alpha[A.C_2 = A\gamma]] \in Q_G^{safe}} \\
\frac{a] + b]}{[A.C_1 = \alpha[A.C_2 = A\gamma]] \in Q_G^{safe}} \\
\frac{a] + b]}{[A.C_1 = \alpha[A.C_2 = A\gamma]] \in Q_G^{safe}} \\
\frac{a] + b]}{[A.C_1 = \alpha[A.C_2 = A\gamma]] \in Q_G^{safe}} \\
\frac{a] + b]}{[A.C_1 = \alpha[A.C_2 = A\gamma]] \in Q_G^{safe}} \\
\frac{a] + b]}{[A.C_1 = \alpha[A.C_2 = A\gamma]] \in Q_G^{safe}} \\
\frac{a] + b]}{[A.C_1 = \alpha[A.C_2 = A\gamma]] \in Q_G^{safe}} \\
\frac{a] + b]}{[A.C_1 = \alpha[A.C_2 = A\gamma]] \in Q_G^{safe}} \\
\frac{a] + b]}{[A.C_1 = \alpha[A.C_2 = A\gamma]] \in Q_G^{safe}} \\
\frac{a] + b]}{[A.C_1 = \alpha[A.C_2 = A\gamma]] \in Q_G^{safe}} \\
\frac{a] + b]}{[A.C_1 = \alpha[A.C_2 = A\gamma]] \in Q_G^{safe}} \\
\frac{a] + b]}{[A.C_1 = \alpha[A.C_2 = A\gamma]] \in Q_G^{safe}} \\
\frac{a] + b]}{[A.C_1 = \alpha[A.C_2 = A\gamma]] \in Q_G^{safe}} \\
\frac{a] + b]}{[A.C_1 = \alpha[A.C_2 = A\gamma]] \in Q_G^{safe}} \\
\frac{a] + b]}{[A.C_1 = \alpha[A.C_2 = A\gamma]] \in Q_G^{safe}} \\
\frac{a] + b]}{[A.C_1 = \alpha[A.C_2 = A\gamma]] \in Q_G^{safe}} \\
\frac{a] + b]}{[A.C_1 = \alpha[A.C_2 = A\gamma]] \in Q_G^{safe}} \\
\frac{a] + b]}{[A.C_1 = \alpha[A.C_2 = A\gamma]} \\
\frac{a} + b]}{[A.C_1 = \alpha[A.C_2 = A\gamma]} \\
\frac{b} + b]}{[A.C_1 = \alpha[A.C_2 = A\gamma]] \in Q_G^{safe}} \\
\frac{b} + b]}{[A.C_1 = \alpha[A.C_2 = A\gamma]} \\
\frac{b} + b]}{[A.C_1 = \alpha[A.C_2$$

Safe Semantics for Shallow Conflicts

A.C $[A.C_1 = [A.C_1 = [$ A.C $[A.C_1 = \alpha$ $A.C_1$ $[A.C_1 = [A.C_1]$ $A.C_1$ $[A.C_1 = A\beta_1$ $A.C_1$ no $[A.C_1 = A\beta_1]$ $A.C_1$ no $[A.C_1 = [A.$ $A.C_1$ non-nested $[A.C_1 = \alpha]$

$C_1 > A.C_2 \in PR$
$[A.C_2 = \alpha A]\gamma] \in Q_G^{safe}$
$C_1 > A.C_2 \in PR$
$\alpha[A.C_2 = A\gamma]] \in Q_G^{safe}$
$right A.C_2 \in PR$
$C_2 = A\beta_2 A]\beta_1 A] \in Q_G^{safe}$
left $A.C_2 \in PR$
${}_1[A.C_2 = A\beta_2 A]] \in Q_G^{safe}$
$on-assoc A.C_2 \in PR$
${}_1[A.C_2 = A\beta_2 A]] \in Q_G^{safe}$
$on-assoc A.C_2 \in PR$
$.C_2 = A\beta_2 A]\beta_1 A] \in Q_G^W$
$d A.C_2 \in PR \neg(\alpha_i \Rightarrow^* A\gamma)$
$\alpha_1[A.C_2 = \alpha_2 A]] \in Q_G^W$

Deep Priority Conflicts

context-free syntax
Exp.Add = Exp "+" Exp {left}
Exp.Lambda = "\\" ID "." Exp
Exp.Minus = "-" Exp
Exp.Var = ID
Exp = "(" Exp ")" {bracket}
context-free priorities
Exp.Minus > Exp.Add > Exp.Lambda

 $q: [Exp.Add = [Exp.Lambda = \setminus ID . Exp] + Exp]$

Rightmost Deep Matching

$$n: \mathcal{M}^{rm}(t_i, q_i)$$

$$\dots t_n], [A.C = q_1 \dots q_n])$$

$$\frac{\mathcal{M}(t, q)}{\mathcal{M}^{rm}(t, q)}$$

$$\frac{\mathcal{M}^{rm}(t_n, q)}{C = t_1 \dots t_n], q)}$$

 $t : [Exp.Add = [Exp.Add = a + [Exp.Lambda = \ x . b]] + c]$

$t: [Exp.Add = [Exp.Add = a + [Exp.Lambda = \ x \ b]] + c]$ $q: [Exp.Add = [Exp.Lambda = \ ID \ Exp] + Exp]$

Rightmost Deep Matching

Rightmost Deep Priority Conflict Pattern

 $A.C_1 > A.C_2 \in PR$ $[A.C_1 = [A.C_2 = \alpha A]\gamma] \in Q_G^{safe}$ $A.C_1 > A.C_2 \in PR$ $[A.C_1 = \alpha[A.C_2 = A\gamma]] \in Q_C^{safe}$

 $A.C_2 > A.C_1 \in PR \quad \alpha \not\Rightarrow_G A\beta$ $[A.C_2 = [A.C_1 = \alpha A]\gamma] \in Q_C^{rm}$

