
What is Research?





Eelco Visser



“We want to have a talk that introduces 
them to the kind of research that our 

community does without picking a single 
paper (or even topic) to discuss.”


 — Karim, Marianna & Jonathan



Failed Attempt: A Taxonomy of PL Research



Reduction

What is the essence of PL research?



A Theory of PL Research
Grand{

Eelco Visser



A Theory of PL Research

PL research is about 

getting stuff for free



What stuff?

PL research is about 

getting programming stuff for free



What stuff?

PL research is about 

getting programming stuff for free

Code
ReliabilityPerformance Functionality



Free as in … 

for free?

PL research is about 

getting programming stuff for free



Free as in … 

If you provide X, you get Y for free



Free as in … 

you = the programmer 

get for free = by the programmer

(which required (a lot of hard) work by PL researchers)

the giving is done by an algorithm or theory

If you provide X, you get Y for free



Free as in … 

For example

X = a program in a high-level programming language

Getting = compiling

Y = a program in machine code

If you provide X, you get Y for free

(aka automatic programming)



Free as in … 

`Providing X’ done using 

a (programming) language

If you provide X, you get Y for free

Captures the properties 

for which Y can be got



A recipe for PL research

Y takes a lot of effort

is tedious, slow, buggy, …



A recipe for PL research

Y takes a lot of effort

is tedious, slow, buggy, …

I wonder if there is 

some way to get Y for free?



A recipe for more incremental PL research (That is fine)

Some existing (F: X => Y)

Is there an X’ that takes less effort?

Can we extend Y?  

Can we make F more efficient?

etc.



Understanding PL research

Many papers are about the intricacies of some F: X => Y

monadic strength mediates between the current computation and …  

to make parsing incremental we use the old tree as input and break down …

This theory provides a lens to understand PL research:

What is the goal they are trying to achieve? vs 

What is the method they are using to do that?

That is the nitty-gritty that defines 

the everyday life of a PL researcher



Domain 
- How does programming in this area work?


Design 
- Description of the idea

‣ Sketches, examples, prototypes, …


Specification 
- Formal definition and verification

‣ Data model, theorems, proofs


Implementation 
- Realization as a software system

‣ Algorithms, (performance) engineering, testing, deployment


Evaluation 
- Does the approach achieve its purpose?

‣ Performance benchmarking, coverage testing, user studies, …

What does PL research involve? What do PL researchers do?

Each of these areas have 
there own field of study



Theory in Practice
Example problems and solutions based on 8 papers [2010 - 2018]

How each solution unlocks new research problems



Problem 
- Implementation of IDEs for programming languages is expensive


Provide 
- Syntax definition, type checker, transformations for language 


Get 
- An IDE for language with syntactic and semantic editor services


Solution 
- IDE engineering (e.g. dynamic language loading in Eclipse)

Programming Environments for Free



Problem 
- Ad hoc implementation of name binding rules (for different language 

constructs, in various artifacts)


Provide 
- Declarative specification of name binding rules


Get 
- A name analysis algorithm, name related editor services


Solution 
- Name binding language design, name analysis algorithm, code generation


Evaluation 
- Coverage evaluation: name binding for subset of C#

Name Resolution for Free



Name Resolution for Free



Problem 
- Whole program analysis is not suitable for interactive use

Provide 
- (Same) Declarative specification of name binding rules

Get 
- An incremental name analysis algorithm, name related editor services

Solution 
- Algorithm and data structure design 

Evaluation 
- Performance benchmarking on series of git commits

Incremental Analysis for Free



Incremental Analysis for Free



Problem 
- But what is the semantics of those name binding rules?!

- And how to increase coverage?

‣ e.g. how to express ‘subsequent scope’?


Provide 
- Scope graph of a program + visibility policy

Get 
- Resolution of references to declarations

Solution 
- Paradigm: scope graphs

- Mathematical definition (calculus), name resolution algorithm, soundness 

proof

Evaluation 
- Formalization of many typical binding patterns in programming languages

More Name Resolution for Free



A scope graph represents the bindings of a program

S0

S1
S2

D < P.p

s.p < s.p’
p < p’

S1

S2

x1

y1

y2 x2

z1

x3S0z2def x3 = z2 5 7
   
def z1 =
  fun x1 { 
    fun y1 { 
      x2 + y2
    }
  }

S1

S2

x1

y1

y2 x2

z1

x3S0z2

R

P

P

D

S1

S2

x1

y1

y2 x2

z1

x3S0z2

D

P

R

R

P

P

D

R.P.D < R.P.P.D



Problem 
- Type-dependent name resolution: name and type analysis are 

interdependent

- Program traversal of type checker depends on binding patterns of 

language

Provide 
- Scope graph and type constraints for a program

Get 
- Name and type resolution 

Solution 
- Represent bindings as constraints

- Formal definition of constraint language with sound resolution 

algorithm

Evaluation 
- Constraint generation for LMR, language with representative 

binding patterns

Type-Dependent Name Resolution for Free



Type-Dependent Name Resolution for Free



Problem 
- How to represent generic and parameterized types using scope graphs?

Solution 
- Represent (module, record, class) types as scopes

Evaluation 
- Specifications of STLC-REC, System F, FGJ

Type Checkers for Free

Problem 
- How to soundly schedule scope graph construction and resolution?

Solution 
- Critical edges determine whether there are more potential dependencies

Problem 
- How to derive type checkers from declarative type system specifications

Solution 
- A ‘logic progr. language’ with scope graph and unification constraints



Type Checkers for Free



Problem 
- Representation of memory in dynamic semantics is ad hoc

- Makes type safety proofs unsystematic

Provide 
- Type system using scope graphs for bindings

Get 
- A uniform model for memory representation in dynamic semantics

Solution 
- Formalization of frames and their correspondence to scopes

Evaluation 
- Coq development specifying type system using scope graphs and 

dynamic semantics using frames for several model languages + type 
safety proofs

Memory Representation for Free



Memory Representation for Free



Problem 
- Type safety proofs are tedious

- Dynamic semantics needs to consider ‘bad cases’

Provide 
- An intrinsically-typed abstract syntax

- A definitional interpreter defined on that abstract syntax

Get 
- A type safety proof 

Solution 
- Encoding (non-lexical) bindings as part of intrinsically-typed abstract 

syntax (using scope graphs) in the Agda dependently-typed programming 
language


Evaluation 
- An intrinsically-typed interpreter for Middle-Weight Java

Type Safety for Free



Type Safety for Free



Type checkers for languages with gradual / substructural / … type systems for free 
- Question: How to turn declarative specifications for these type systems into type checkers?


Type safety for languages with gradual / substructural / … type systems for free 
- Question: can we extend the intrinsically-typed definitional interpreter approach to more expressive type systems?


Program refactorings for free 
- Idea: refactorings can be specified by constraints 


Incremental modular type checkers for free 
- Idea: module dependencies determined by scope graph


Control for free 
- Question: what is the analog of scopes-as-frames for control?

More Programming Stuff for Free (Work in Progress)



One topic, a range of PL methods

Domain 
- How does programming programming environments work?


Design 
- Exploring language designs for better abstractions for name binding and resolution


Specification 
- Formal semantics of name resolution, correctness of algorithms wrt semantics

- Specification of dynamic semantics, (automatic) type soundness proofs


Implementation 
- Language implementation, constraint solvers, IDE integration


Evaluation 
- Benchmarking performance, evaluating coverage, informally testing usability



A Theory of PL Research

PL research is about 

getting programming 

stuff for free



Your Turn

Confirm 
- Can you identify programming languages research that fits in this framework?

- What is the problem they are trying to solve?

- What is the solution providing for free?

- etc.

Refute 
- Can you identify programming languages research that does not fit in this framework?

- What kind of research is it?

- Why does it not fit?

Ask your colleagues / advisors: what is PL research?

Go out into the world (but first SPLASH) and test this theory


