I.W
What Is II=‘I Research?
N



the effectiveness and reliability of programming languages and systems.
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“We want to have a talk that introduces
them to the kind of research that our
community does without picking a single
paper (or even topic) to discuss.”

— Karim, Marianna & Jonathan



Failed Attempt: A Taxonomy of PL Research

Areas of PL research and the problems they address

o Language design

- How to express solutions to computational problems (programs)?

Programming

- How to develop/find programs?

Verification

- How to ensure that programs are correct (do the right thing)?
Implementation

- How to make programs fast / use few resources?
Programming environments

= How to do make the solution finding process fast?

Language Design

R.P.D < R.P.P.D

Testing at OOPSLA 2019
* Testing

= Trace A Random Testing for Y
= Automatic and Scalable Detection of Logical Errors in Functional
Programming Assignments

g
® Test Generation

- CLOTHO: Directed Test Generation for Weakly Consistent Database
Systems

- Coverage Guided, Property Based Testing
- FuzzFactory: Domain-Specific Fuzzing with Waypoints.
= Compiler Fuzzing: How Much Does It Matter?

® How to express programs?
- What is the best language to express intent?
* Why so many languages?
- Why not a universal language? Turing?!
= Most programming languages specialized for some domain
(family of programs)
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Declarative Type System Specification in Statix
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Certification and Specification at OOPSLA 2019

Inference of

Specitying ogic:
Simutations.

- Relational Verification using Reinforcement Learning
Modular Verification
Modutar Verification of Heap Reachability Properties in Separation Logic
Modular Verification of Web Page Layout
Modutar
Leveraging Rust Types for Modular Specification and Verfication

Research Objectives

nproving

~ Express intent at the rightlevel of sbstraction
- Actionabie foedback tha i relevant and fimely
= Trust the execution and analysis of programs

Language Design at OOPSLA 2019 Evaluation of Language Design

What is a good language design?
= We don't know very well
* Mathematically sound, practical, elegant, ...
* Not a guarantee for a good language
- How do language designs fare in practice?
* Methods & tools
- Design evaluation: apply it to critical/representative cases
- Field evaluation: corpus studies

tion
- Formal Foundations of Serverless Computing
- A Formalization of Java's Concurrent Access Modes.
= A Path To DOT: Formalizing Fully Path-Dependent Types
= Qubit Allocation as a Combination of Subgraph Isomorphism and
Token Swapping

Implementation at OOPSLA 2019

Types at OOPSLA 2019

- more restrictive: rule out more classes of emors
- more precision/fine grained

type systems - System FR: Formalized Foundations for the Stainless Verifier
- Complete Monitors for Gradual Types

Impact of PL Research

Programming Domains at OOPSLA 2019

* Distributed Systoms
- Asphalion: Trustworthy Shiskding Against Byzantine Faults
- DProt: Distributed Profier with Strong Guarantees

Concurrency
- Efficient Lock-Fres Durable Sets
- Wesk Persistency Semantics from the Ground Up

Evaluation of Language Design at OOPSLA 2019

Evaluation of Language Design

- Scala Implicits are Everywhere

- Casting about in the Dark: An empirical study of cast operations
in Java programs

= On the Impact of Programming Languages on Code Quality

- On the Design, Implementation and Use of Laziness in R

Program Analysis at OOPSLA 2019

Program Analysis
- PYE: A Framework for Precise-Yet-Efficient Just-In-Time Analyses
Programs

% Binary

by
Unbiased Whole-program Path Sampling and Per-path Abstract
Interpretation

- Staged Abstract Interpreters
- Static Analysis with Demand-Driven Value Refinement
- Sound and Reusable C for Abstract

Programming Environments

Research?

Language Design: Methods & Tools

‘ Domain Understanding
- What are recurring patterns in the domain?
- Programming interface/model

* Linguistic abstraction
Lift /

* Examples!
- That motivate the need for a better

© Formalization
- Syntax definition
- Static semantics / type system
- Dynamic semantics / interpreter

Implementation

Verification

Programming Environments.

. -How
- How to do make programing itself fast?

helping programmers to program
.

- How to develop/find programs?

Problems

Methods & Tools of PL Research

Language Design Example: Statix
* Language
- Statec
- Domain: Type system specécation
Concepts.

© How to ensure that programs are correct (do the right thing)?
* What is correctness?

Program Synthesis at OOPSLA 2019

® Synthesis
-N.:Mus-wvb-du:ﬁmﬁwm
- 9" ! ey
= AutoPandas: Neural-Backed Generators for Program Synthesis
= On the Fly Synthesis of Edit Suggestions




Reduction

What is the essence of PL research?
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A Theory of PL Research

Eelco Visser



A Theory of PL Research

PL research Is about
getting stuft for free




What stuff?

PL research Is about
getting programming stuff for free



What stuff?

PL research Is about
getting programming stuff for free

Code

Performance Functionality Reliability



Freeas in...

PL research Is about
getting programming stuff for free

for free?



Freeas in...

[f you provide X, you get Y for free



Freeas in...

[f you provide X, you get Y for free

you = the programmer
get for free = by the programmer
the giving Is done by an algorithm or theory

(which required (a lot of hard) work by PL researchers)



Freeas in...

[f you provide X, you get Y for free

For example

X = a program In a high-level programming language
Y = a program in machine code
Getting = compiling

(aka automatic programming)



Freeas in...

If you provide X, you get Y for free

‘Providing X’ done using
a (programming) language

Captures the properties
for which Y can be got



A recipe for PL research

Y takes a lot of effort

Is tedious, slow, buggy, ...



A recipe for PL research

Y takes a lot of effort

Is tedious, slow, buggy, ...

| wonder If there Is
some way to get Y for free”



A recipe for more incremental PL research (That is fine)

Some existing (F: X =>Y)
Is there an X’ that takes less effort?
Can we extend Y?
Can we make F more efficient?

etc.



Understanding PL research

Many papers are about the intricacies of some F: X =>Y

monadic strength mediates between the current computation and ...
to make parsing incremental we use the old tree as input and break down ...

That is the nitty-gritty that defines
the everyday life of a PL researcher

This theory provides a lens to understand PL research:

What is the goal they are trying to achieve? vs
What is the method they are using to do that?



I What does PL research involve”? What do PL researchers do? I

Domain
- How does programming in this area work"?

Design
- Description of the idea
» Sketches, examples, prototypes, ...

Specification
- Formal definition and verification Each of these areas have
> Data model, theorems, proofs there own field of study

Implementation

- Realization as a software system
> Algorithms, (performance) engineering, testing, deployment

Evaluation

- Does the approach achieve its purpose?
» Performance benchmarking, coverage testing, user studies, ...



Theory In Practice

Example problems and solutions based on 8 papers [2010 - 2018]

How each solution unlocks new research problems



Programming Environments for Free

Problem
- Implementation of IDEs for programming languages is expensive

Provide
- Syntax definition, type checker, transformations for language

Get

- An IDE for language with syntactic and semantic editor services

Solution
- IDE engineering (e.g. dynamic language loading in Eclipse)

& entities.str & primitives.str 7] *EntityLang.sdf 23 T example.ent £3

module Entitylang 1 ~module example "

imports Common entity User { ’}

name : String
exports password : String
(X homepage : URI
context-free start-symbols } '
Start

context-free syntax T example.aterm g3

"module" ID Definition* -> Start {cons("Module")} Entityl(
"entity" ID "{" Propertyx "}" -> Definition {cons("Entity")} "User"
ID ":" Type -> Property {cons("Property")} , | Property("name", Type("String"))

, Property("password", Type("String"))
, Property("homepage", Type("URI"))
)

1D -> Type {cons("Type")}
G ID “<>ll Ty

The Spoofax Language Workbench

Rules for Declarative Specification of Languages and IDEs

Lennart C. L. Kats
Delft University of Technology
I.c.l.kats@tudelft.nl

Abstract

Spoofax i1s a language workbench for efficient, agile devel-
opment of textual domain-specific languages with state-of-
the-art IDE support. Spoofax integrates language processing
techniques for parser generation, meta-programming, and
IDE development into a single environment. It uses concise,
declarative specifications for languages and IDE services. In
this paper we describe the architecture of Spoofax and in-
troduce idioms for high-level specifications of language se-
mantics using rewrite rules, showing how analyses can be
reused for transformations, code generation, and editor ser-
vices such as error marking, reference resolving, and content
completion. The implementation of these services is sup-
ported by language-parametric editor service classes that can
be dynamically loaded by the Eclipse IDE, allowing new
languages to be developed and used side-by-side in the same
Eclipse environment.

Categories and Subject Descriptors D.2.3 [Software En-
gineering): Coding Tools and Techniques: D.2.6 [Software
Engineering]: Programming Environments

General Terms Languages

1. Introduction

Domain-specific languages (DSLs) provide high expressive
power focused on a particular problem domain [38, 47].
They provide linguistic abstractions over common tasks
within a domain, so that developers can concentrate on ap-
plication logic rather than the accidental complexity of low-
level implementation details. DSLs have a concise, domain-
specific notation for common tasks in a domain, and al-
low reasoning at the level of these constructs. This allows
them to be used for automated, domain-specific analysis,
verification, optimization, parallelization, and transforma-
tion (AVOPT) [38].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA/SPLASH'10, October 17-21, 2010, Reno'Tahoe, Nevada, USA.
Copyright ©) 2010 ACM 978- 1-4503-0203-&/10/10.. .$10.00

Eelco Visser
Delft University of Technology
visser @acm.org

For developers to be productive with DSLs, good in-
tegrated development environments (IDEs) for these lan-
guages are essential. Over the past four decades, IDEs have
slowly risen from novelty tool status to becoming a funda-
mental part of software engineering. In early 2001, IntelllJ
IDEA [42] revolutionized the IDE landscape [17] with an
IDE for the Java language that parsed files as they were typed
(with error recovery in case of syntax errors), performed se-
mantic analysis in the background, and provided code nav-
igation with a live view of the program outline, references
to declarations of identifiers, content completion proposals
as programmers were typing, and the ability to transform
the program based on the abstract representation (refactor-
ings). The now prominent Eclipse platform, and soon af-
ter, Visual Studio, quickly adopted these same features. No
longer would programmers be satishied with code editors
that provided basic syntax highlighting and a “build” button.
For new languages to become a success, state-of-the-art IDE
support is now mandatory. For the production of DSLs this
requirement is a particular problem, since these languages
are often developed with much fewer resources than general
purpose languages.

There are five key ingredients for the construction of a
new domain-specific language. (1) A parser for the synrax
of the language. (2) Semantic analysis to validate DSL pro-
grams according to some set of constraints. (3) Transfor-
mations manipulate DSL programs and can convert a high-
level, technology-independent DSL specification to a lower-
level program. (4) A code generator that emits executable
code. (5) Integration of the language into an IDE.

Traditionally, a lot of effort was required for each of these
ingredients. However, there are now many tools that support
the various aspects of DSL development. Parser generators
can automatically create a parsers from a grammar. Mod-
ern parser generators can construct efficient parsers that can
be used in an interactive environment, supporting error re-
covery in case of syntax-incorrect or incomplete programs.
Meta-programming languages [31110, 12,20, 35] and frame-
works [39,[57] make it much easier to specify the semantics
of a language. Tools and frameworks for IDE development
such as IMP [7, 8] and TMF [56], simplify the implemen-
tation of IDE services. Other tools, such as the Synthesizer




Name Resolution for Free

Problem

- Ad hoc implementation of name binding rules (for different language
constructs, in various artifacts)

Provide
- Declarative specification of name binding rules

Get

- A name analysis algorithm, name related editor services

Solution
- Name binding language design, name analysis algorithm, code generation

Evaluation
- Coverage evaluation: name binding for subset of C#

Declarative Name Binding and Scope Rules

Gabriél Konat. Lennart Kats. Guido Wachsmuth. and Eelco Visser

Delft University of Technology, The Netherlands
g.d.p.konat@student. tudelft.nl,
{1.c.1l.kats,g.h.wachsmuth,e.visser}@tudelft.nl

Abstract. In textual software languages, names are used to reference
elements like variables, methods, classes, etc. Name resolution analyses
these names in order to establish references between definition and use
sites of elements. In this paper, we identify recurring patterns for name
bindings in programming languages and introduce a declarative meta-
language for the specification of name bindings in terms of namespaces,
definition sites, use sites, and scopes. Based on such declarative name
binding specifications, we provide a language-parametric algorithm for
static name resolution during compile-time. We discuss the integration
of the algorithm into the Spoofax Language Workbench and show how
its results can be employed in semantic editor services like reference res-
olution, constraint checking, and content completion.

1 Introduction

Software language engineering is concerned with linguistic abstraction, the for-
malization of our understanding of domains of computation in higher-level soft-
ware languages. Such languages allow direct expression in terms of the domain,
instead of requiring encoding in a less specific language. They raise the level of
abstraction and reduce accidental complexity. One of the key goals in the field
of language engineering is to apply these techniques to the discipline itself: high-
level languages to specify all aspects of software languages. Declarative languages
are of particular interest since they enable language engineers to focus on the
What? instead of the How?. Syntax definitions are a prominent example. With
declarative formalisms such as EBNF, we can specify the syntactic concepts of a
language without specifying how they can be recognized programmatically. This
declarativity is crucial for language engineering. Losing it hampers evolution,
maintainability, and compositionality of syntax definitions [15].

Despite the success of declarative syntax formalisms, we tend to program-
matic specifications for other language aspects. Instead of specifying languages,
we build programmatic language processors, following implementation patterns
in rather general specification languages. These languages might still be con-
sidered domain-specific, when they provide special means for programmatic lan-

over computation order. However, they enable us only to implement language

K. Czarnecki and G. Hedin (Eds.): SLE 2012, LNCS 7745, pp. 311-831 2013.
© Springer-Verlag Berlin Heidelberg 2013




Name Resolution for Free

class C { rules
void m() { int x; } Class (NonPartial(), <, _, _):
} defines uni que C lass c Gabriél Konat, Lennart Kats, Guido Wachsmuth, and Eelco Visser
SCopes field , Ine thod Delft University of Technology, The Netherlands
class D { (L.c.1.keve g b sachomth, o vissor) Studelts a1
void m() { Class(Partial (), c, _, _):
int x; defines non—unique class C Abstract. In textual software languages, names are used to reference

elements like variables, methods, classes, etc. Name resolution analyses
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} sites of elements. In this paper, we identify recurring patterns for name

Declarative Name Binding and Scope Rules

bindings in programming languages and introduce a declarative meta-

language for the specification of name bindings in terms of namespaces,
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definition sites, use sites, and scopes. Based on such declarative name

} de f ine s uni qlle me th Od m binding specifications, we provide a language-parametric algorithm for

static name resolution during compile-time. We discuss the integration
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its results can be employed in semantic editor services like reference res-

olution, constraint checking, and content completion.
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language without specifying how they can be recognized programmatically. This
declarativity is crucial for language engineering. Losing it hampers evolution,
maintainability, and compositionality of syntax definitions [15].
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we build programmatic language processors, following implementation patterns

in rather general specification languages. These languages might still be con-
sidered domain-specific, when they provide special means for programmatic lan-
guage processors. They also might be considered declarative, when they abstract
over computation order. However, they enable us only to implement language
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Incremental Analysis for Free

1= class User {
2 string name;

3}
4~ class Blog {

B 5 string post(User user, string message) {
X = posterName = “"name”;
7 string posterName;
X posterName = user.nam;
X string posterName = user.name;
10 return posterName;

Problem 12}

- Whole program analysis is not suitable for interactive use

Provide
- (Same) Declarative specification of name binding rules

Get

- An Incremental name analysis algorithm, name related editor services

Solution
- Algorithm and data structure design

Evaluation
- Performance benchmarking on series of git commits

A Language Independent Task Engine
for Incremental Name and Type Analysis

Guido H. Wachsmuth'?, Gabriél D.P. Konat', Vlad A. Vergu',
Danny M. Groenewegen'!, and Eelco Visser!

' Delft University of Technology, The Netherlands

{g.h.wachsmuth,v.a.vergu,d.m.groenewegen}@tudelft.nl,

{gkonat ,visser}Q@acm.org
? Oracle Labs, Redwood City, CA, USA

Abstract. IDEs depend on incremental name and type analysis for re-
sponsive feedback for large projects. In this paper, we present a language-
independent approach for incremental name and type analysis. Analysis
consists of two phases. The first phase analyzes lexical scopes and bind-
ing instances and creates deferred analysis tasks. A task captures a single
name resolution or type analysis step. Tasks might depend on other tasks
and are evaluated in the second phase. Incrementality is supported on file
and task level. When a file changes, only this file is recollected and only
those tasks are reevaluated, which are affected by the changes in the col-
lected data. The analysis does neither re-parse nor re-traverse unchanged
files, even if they are affected by changes in other files. We implemented
the approach as part of the Spoofax Language Workbench and evaluated
it for the WebDSL web programming language.

1 Introduction

Integrated development environments (IDEs) provide a wide variety of language-
specific editor services such as syntax highlighting, error marking, code naviga-
tion, content completion, and outline views in real-time, while a program is
edited. These services require syntactic and semantic analyses of the edited pro-
gram. Thereby, timely availability of analysis results is essential for IDE respon-
siveness. Whole-program analyses do not scale because the size of the program
determines the performance of such analyses.

Incremental analysis reuses previous analysis results of unchanged program
parts and reanalyses only parts affected by changes. The granularity of the in-
cremental analysis directly impacts the performance of the analysis. A more
fine-grained incremental analysis is able to reanalyze smaller units of change,
but requires a more complex change and dependency analysis. At program level,
any change requires reanalysis of the entire program, which might consider the
results of the previous analysis. At file level, a file change requires reanalysis of
the entire file and all dependent files. At program element level, changes to an
element within a file require reanalysis of that element and dependent elements,
but typically not of entire files. Incremental analyses are typically implemented

M. Erwig, R.F. Paige, and E. Van Wyk (Eds.): SLE 2013, LNCS 8225, pp. 260-280, 2013.
(©) Springer International Publishing Switzerland 2013




Incremental Analysis for Free
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Fig. 9. Incremental analysis time ordered by LOC (left) and ALOC (right)

A Language Independent Task Engine
for Incremental Name and Type Analysis

Guido H. Wachsmuth'?, Gabriél D.P. Konat!, Vlad A. Vergu',
Danny M. Groenewegen', and Eelco Visser?

' Delft University of Technology, The Netherlands
{g.h.wachsmuth,v.a.vergu,d.m.groenewegen}@tudelft.nl,

{gkonat ,visser}@acm.org
2 QOracle Labs, Redwood City, CA, USA

Abstract. IDEs depend on incremental name and type analysis for re-
sponsive feedback for large projects. In this paper, we present a language-
independent approach for incremental name and type analysis. Analysis
consists of two phases. The first phase analyzes lexical scopes and bind-
ing instances and creates deferred analysis tasks. A task captures a single
name resolution or type analysis step. Tasks might depend on other tasks
and are evaluated in the second phase. Incrementality is supported on file
and task level. When a file changes, only this file is recollected and only
those tasks are reevaluated, which are affected by the changes in the col-
lected data. The analysis does neither re-parse nor re-traverse unchanged
files, even if they are affected by changes in other files. We implemented
the approach as part of the Spoofax Language Workbench and evaluated
it for the WebDSL web programming language.

1 Introduction

Integrated development environments (IDEs) provide a wide variety of language-
specific editor services such as syntax highlighting, error marking, code naviga-
tion, content completion, and outline views in real-time, while a program is
edited. These services require syntactic and semantic analyses of the edited pro-
gram. Thereby, timely availability of analysis results is essential for IDE respon-
siveness. Whole-program analyses do not scale because the size of the program
determines the performance of such analyses.

Incremental analysis reuses previous analysis results of unchanged program
parts and reanalyses only parts affected by changes. The granularity of the in-
cremental analysis directly impacts the performance of the analysis. A more
fine-grained incremental analysis is able to reanalyze smaller units of change,
but requires a more complex change and dependency analysis. At program level,
any change requires reanalysis of the entire program, which might consider the
results of the previous analysis. At file level, a file change requires reanalysis of
the entire file and all dependent files. At program element level, changes to an
element within a file require reanalysis of that element and dependent elements,
but typically not of entire files. Incremental analyses are typically implemented

M. Erwig, R.F. Paige, and E. Van Wyk (Eds.): SLE 2013, LNCS 8225, pp. 260-280, 2013.
© Springer International Publishing Switzerland 2013




More Name Resolution for Free

Problem
- But what is the semantics of those name binding rules?!
- And how to increase coverage?

» e.g. how to express ‘subsequent scope’?

Provide
- Scope graph of a program + visibility policy

Get

- Resolution of references to declarations

Solution
- Paradigm: scope graphs

- Mathematical definition (calculus), name resolution algorithm, soundness
proof

Evaluation
- Formalization of many typical binding patterns in programming languages

A Theory of Name Resolution

Pierre Neron'. Andrew Tolmach?. Eelco Visser'. and Guido Wachsmuth'
Y Delft University of Technology, The Netherlands,
{p.j.m.neron, e.visser, g.wachsmuth}@tudelft.nl,
*) Portland State University, Portland, OR. USA
tolmach@pdx. edu

Abstract. We describe a language-independent theory for name binding
and resolution, suitable for programming languages with complex scop-
ing rules including both lexical scoping and modules. We formulate name
resolution as a two-stage problem. First a language-independent scope
graph is constructed using language-specific rules from an abstract syn-
tax tree. Then references in the scope graph are resolved to correspond-
ing declarations using a language-independent resolution process. We
introduce a resolution calculus as a concise, declarative, and language-
independent specification of name resolution. We develop a resolution
algorithm that is sound and complete with respect to the calculus. Based
on the resolution calculus we develop language-independent definitions
of a-equivalence and rename refactoring. We illustrate the approach us-
ing a small example language with modules. In addition, we show how
our approach provides a model for a range of name binding patterns in

existing languages.

1 Introduction

Naming is a pervasive concern in the design and implementation of programming
languages. Names identify declarations of program entities (variables, functions,
types. modules, etc.) and allow these entities to be referenced from other parts
of the program. Name resolution associates each reference to its intended decla-
ration(s), according to the semantics of the language. Name resolution underlies
most operations on languages and programs, including static checking, trans-
lation, mechanized description of semantics, and provision of editor services in
[DEs. Resolution is often complicated. because it cuts across the local inductive
structure of programs (as described by an abstract syntax tree). For example,
the name introduced by a let node in an ML AST may be referenced by an
arbitrarily distant child node. Languages with explicit name spaces lead to fur-
ther complexity: for example, resolving a qualified reference in Java requires first
resolving the class or package name to a context, and then resolving the member
name within that context. But despite this diversity, it is intuitively clear that
the basic concepts of resolution reappear in similar form across a broad range of
lexically-scoped languages.

In practice, the name resolution rules of real programming languages are
usually described using ad hoc and informal mechanisms. Even when a lan-
guage s formalized, its resolution rules are typically encoded as part of static




A scope graph represents the bindings of a program
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Type-Dependent Name Resolution for Free

Problem

- Type-dependent name resolution: name and type analysis are
interdependent

- Program traversal of type checker depends on binding patterns of
language

Provide

- Scope graph and type constraints for a program

Get

- Name and type resolution

olution
- Represent bindings as constraints

- Formal definition of constraint language with sound resolution
algorithm

Evaluation

- Constraint generation for LMR, language with representative
binding patterns

A Constraint Language for Static
Semantic Analysis Based on Scope Graphs

Hendrik van Antwerpen

TU Delft, The Netherlands
h.vanantwerpen@tudelft.nl

Eelco Visser
TU Delft, The Netherlands
visser@acm.org

Abstract

In previous work, we introduced scope graphs as a formalism for
describing program binding structure and performing name resolu-
tion in an AST-independent way. In this paper, we show how to use
scope graphs to build static semantic analyzers. We use constraints
extracted from the AST to specify facts about binding, typing, and
initialization. We treat name and type resolution as separate build-
ing blocks, but our approach can handle language constructs—such
as record field access—for which binding and typing are mutually
dependent. We also refine and extend our previous scope graph the-
ory to address practical concerns including ambiguity checking and
support for a wider range of scope relationships. We describe the
details of constraint generation for a model language that illustrates
many of the interesting static analysis issues associated with mod-
ules and records.

Categories and Subject Descriptors D.3.1 |Programming Lan-
guages|]: Formal Definitions and Theory: D.3.2 |Programming
Languages]: Language classifications; FE3.1 |Logics and Mean-
ings of Programs). Specifying and Verifying and Reasoning about
Programs: D.3.4 |Programming Languages). Processors: F.3.2
|Logics and Meanings of Programs]: Semantics of Programming
Languages: D.2.6 [Software Engineering|: Programming Envi-
ronments

Keywords Language Specification; Name Binding: Types: Do-
main Specific Languages: Meta-Theory

1. Introduction

Language workbenches [6] are tools that support the implemen-
tation of full-fledged programming environments for (domain-
specific) programming languages. Ongoing research investigates
how to reduce implementation effort by factoring out language-
independent implementation concerns and providing high-level
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meta-languages for the specification of syntactic and semantic as-
pects of a language [18]. Such meta-languages should (i) have a
clear and clean underlying theory: (ii) handle a broad range of
common language features; (ii1) be declarative, but be realizable
by practical algorithms and tools: (iv) be factored into language-
specific and language-independent parts, to maximize re-use; and
(v) apply to erroneous programs as well as to correct ones.

In recent work we showed how name resolution for lexically-
scoped languages can be formalized in a way that meets these cri-
teria [14]. The name binding structure of a program is captured in
a scope graph which records identifier declarations and references
and their scoping relationships, while abstracting away program de-
tails. Its basic building blocks are scopes, which correspond to sets
of program points that behave uniformly with respect to resolution.
A scope contains identifier declarations and references, each tagged
with its position in the original AST. Scopes can be connected
by edges representing lexical nesting or import of named collec-
tions of declarations such as modules or records. A scope graph
is constructed from the program AST using a language-dependent
traversal, but thereafter, it can be processed in a largely language-
independent way. A resolution calculus gives a formal definition
of what it means for a reference to resolve to a declaration. Res-
olutions are described as paths in the scope graph obeying certain
(language-specific) criteria; a given reference may resolve to one
or many declarations (or to none). A derived resolution algorithm
computes the set of declarations to which each reference resolves,
and is sound and complete with respect to the calculus.

In this paper, we refine and extend the scope graph framework
of [14] to a full framework for static semantic analysis. In essence,
this involves uniting a type checker with our existing name reso-
lution machinery. Ideally, we would like to keep these two aspects
separated as much as possible for maximum modularity. And in-
deed, for many language constructs, a simple two-stage approach
name resolution using the scope graph followed by a separate type
checking step—would work. But the full story is more complicated,
because sometimes name resolution also depends on type resolu-
tion. For example, in a language that uses dot notation for object
field projection, determining the resolution of x in the expression
r . x requires first determining the object type of r, which in turn
requires name resolution again. Thus, we require a unified mecha-
nism for expressing and solving arbitrarily interdependent naming
and typing resolution problems.

To address this challenge, we base our framework on a language
of constraints. Term equality constraints are a standard choice for
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Abstract

In previous work, we introduced scope graphs as a formalism for
describing program binding structure and performing name resolu-
tion in an AST-independent way. In this paper, we show how to use
scope graphs to build static semantic analyzers. We use constraints
extracted from the AST to specify facts about binding, typing, and
initialization. We treat name and type resolution as separate build-
ing blocks, but our approach can handle language constructs—such
as record field access—for which binding and typing are mutually
dependent. We also refine and extend our previous scope graph the-
ory to address practical concerns including ambiguity checking and
support for a wider range of scope relationships. We describe the
details of constraint generation for a model language that illustrates
many of the interesting static analysis issues associated with mod-
ules and records.
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Languages]: Language classifications: F.3.1 [Logics and Mean-
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1. Introduction

Language workbenches [6] are tools that support the implemen-
tation of full-fledged programming environments for (domain-
specific) programming languages. Ongoing research investigates
how to reduce implementation effort by factoring out language-
independent implementation concerns and providing high-level
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meta-languages for the specification of syntactic and semantic as-
pects of a language [18]. Such meta-languages should (i) have a
clear and clean underlying theory: (ii) handle a broad range of
common language features; (iii) be declarative, but be realizable
by practical algorithms and tools: (iv) be factored into language-
specific and language-independent parts, to maximize re-use; and
(v) apply to erroneous programs as well as to correct ones.

In recent work we showed how name resolution for lexically-
scoped languages can be formalized in a way that meets these cri-
teria [14]. The name binding structure of a program is captured in
a scope graph which records identifier declarations and references
and their scoping relationships, while abstracting away program de-
tails. Its basic building blocks are scopes, which correspond to sets
of program points that behave uniformly with respect to resolution.
A scope contains identifier declarations and references, each tagged
with its position in the original AST. Scopes can be connected
by edges representing lexical nesting or import of named collec-
tions of declarations such as modules or records. A scope graph
is constructed from the program AST using a language-dependent
traversal, but thereafter, it can be processed in a largely language-
independent way. A resolution calculus gives a formal definition
of what it means for a reference to resolve to a declaration. Res-
olutions are described as paths in the scope graph obeying certain
(language-specific) criteria; a given reference may resolve to one
or many declarations (or to none). A derived resolution algorithm
computes the set of declarations to which each reference resolves,
and is sound and complete with respect to the calculus.

In this paper, we refine and extend the scope graph framework
of [14] to a full framework for static semantic analysis. In essence,
this involves uniting a type checker with our existing name reso-
lution machinery. Ideally, we would like to keep these two aspects
separated as much as possible for maximum modularity. And in-
deed, for many language constructs, a simple two-stage approach—
name resolution using the scope graph followed by a separate type
checking step—would work. But the full story is more complicated,
because sometimes name resolution also depends on type resolu-
tion. For example, in a language that uses dot notation for object
field projection, determining the resolution of x in the expression
r . x requires first determining the object type of r, which in turn
requires name resolution again. Thus, we require a unified mecha-
nism for expressing and solving arbitrarily interdependent naming
and typing resolution problems.

To address this challenge, we base our framework on a language
of constraints. Term equality constraints are a standard choice for




Type Checkers for Free

Problem
- How to represent generic and parameterized types using scope graphs”?

Solution
- Represent (module, record, class) types as scopes

Evaluation
- Specifications of STLC-REC, System F, FGJ

Problem
- How to soundly schedule scope graph construction and resolution?

Solution
- Critical edges determine whether there are more potential dependencies

Problem
- How to derive type checkers from declarative type system specifications

Solution
- A ‘logic progr. language’ with scope graph and unification constraints

Scopes as Types
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Scope graphs are a promising generic framework to model the binding structures of programming languages,
bridging formalization and implementation, supporting the definition of type checkers and the automation
of type safety proofs. However, previous work on scope graphs has been limited to simple, nominal type
systems. In this paper, we show that viewing scopes as types enables us to model the internal structure of
types in a range of non-simple type systems (including structural records and generic classes) using the
generic representation of scopes. Further, we show that relations between such types can be expressed in
terms of generalized scope graph queries. We extend scope graphs with scoped relations and queries. We
introduce Statix, a new domain-specific meta-language for the specification of static semantics, based on scope
graphs and constraints. We evaluate the scopes as types approach and the Statix design in case studies of the
simply-typed lambda calculus with records, System F, and Featherweight Generic Java.
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1 INTRODUCTION

The goal of our work is to support high-level specification of type systems that can be used for multi-
ple purposes, including reasoning (about type safety among other things) and the implementation of
type checkers [Visser et al. 2014]. Traditional approaches to type system specification do not reflect
the commonality underlying the name binding mechanisms for different languages. Furthermore,
operationalizing name binding in a type checker requires carefully staging the traversals of the
abstract syntax tree in order to collect information before it is needed. In this paper, we introduce
an approach to the declarative specification of type systems that is close in abstraction to traditional
type system specifications, but can be directly interpreted as type checking rules. The approach is
based on scope graphs for name resolution, and constraints to separate traversal order from solving
order.
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- Type system using scope graphs for bindings

——— Abstract

Semantic specifications do not make a systematic connection between the names and scopes in the
G et static structure of a program and memory layout, and access during its execution. In this paper,

we introduce a systematic approach to the alignment of names in static semantics and memory
in dynamic semantics, building on the scope graph framework for name resolution. We develop

a uniform memory model consisting of frames that instantiate the scopes in the scope graph

- A uniform model for memory representation in dynamic semantics

run-time memory layout, and between static resolution paths and run-time memory access paths.
The approach scales to a range of binding features, supports straightforward type soundness

proofs, and provides the basis for a language-independent specification of sound reachability-
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Type Safety for Free

Problem

- Type safety proofs are tedious
- Dynamic semantics needs to consider ‘bad cases’

Provide
- An intrinsically-typed abstract syntax
- A definitional interpreter defined on that abstract syntax

Get
- A type safety proof

Solution

- Encoding (non-lexical) bindings as part of intrinsically-typed abstract
syntax (using scope graphs) in the Agda dependently-typed programming
language

Evaluation
- An intrinsically-typed interpreter for Middle-Weight Java

Intrinsically-Typed Definitional Interpreters
for Imperative Languages
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A definitional interpreter defines the semantics of an object language in terms of the (well-known) semantics
of a host language, enabling understanding and validation of the semantics through execution. Combining
a definitional interpreter with a separate type system requires a separate type safety proof. An alternative
approach, at least for pure object languages, is to use a dependently-typed language to encode the object
language type system in the definition of the abstract syntax. Using such intrinsically-typed abstract syntax
definitions allows the host language type checker to verify automatically that the interpreter satisfies type
safety. Does this approach scale to larger and more realistic object languages, and in particular to languages
with mutable state and objects?

In this paper, we describe and demonstrate techniques and libraries in Agda that successfully scale up
intrinsically-typed definitional interpreters to handle rich object languages with non-trivial binding structures
and mutable state. While the resulting interpreters are certainly more complex than the simply-typed A-
calculus interpreter we start with, we claim that they still meet the goals of being concise, comprehensible,
and executable, while guaranteeing type safety for more elaborate object languages. We make the following
contributions: (1) A dependent-passing style technique for hiding the weakening of indexed values as they
propagate through monadic code. (2) An Agda library for programming with scope graphs and frames, which
provides a uniform approach to dealing with name binding in intrinsically-typed interpreters. (3) Case studies
of intrinsically-typed definitional interpreters for the simply-typed A-calculus with references (STLC+Ref)
and for a large subset of Middleweight Java (MJ).
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More Programming Stuff for Free (Work in Progress)

Type checkers for languages with gradual / substructural / ... type systems for free
- Question: How to turn declarative specifications for these type systems into type checkers?

Type safety for languages with gradual / substructural / ... type systems for free

- Question: can we extend the intrinsically-typed definitional interpreter approach to more expressive type systems?

Program refactorings for free

- |dea: refactorings can be specified by constraints

Incremental modular type checkers for free

- ldea: module dependencies determined by scope graph

Control for free

- Question: what is the analog of scopes-as-frames for control?



One topic, a range of PL methods

Domain
- How does programming programming environments work?

Design
- Exploring language designs for better abstractions for name binding and resolution

Specification
- Formal semantics of name resolution, correctness of algorithms wrt semantics
- Specification of dynamic semantics, (automatic) type soundness proofs

Implementation
- Language implementation, constraint solvers, IDE integration

Evaluation
- Benchmarking performance, evaluating coverage, informally testing usabillity



A Theory of PL Research

PL research Is about
getting programming
stuff for free



Your Turn

Go out into the world (but first SPLASH) and test this theory

Confirm

- Can you identify programming languages research that fits in this framework?
- What is the problem they are trying to solve?
- What is the solution providing for free?

- etc.

Refute

- Can you identify programming languages research that does not fit in this framework??
- What kind of research is it?
- Why does it not fit?

Ask your colleagues / advisors: what is PL research?




