Multi-Purpose Syntax Definition with SDF3

Eelco Visser

]
TUDelft

SEFM | ‘CWI, Amsterdam’ | September 16, 2020

TU Delft
2020

—

A Family of Syntax Definition Formalisms

Eelco Visser

Programming Research Group, University of Amsterdam,
Kruislaan 403, NL-1098 SJ Amsterdam, The Netherlands
email: visser@fwi.uva.nl, http://adam.fwi.uva.nl /~visser/

Abstract. In this paper we design a syntax definition formalism as a family
of formalisms. Starting with a small kernel, various features for syntax de-
finition are designed orthogonally to each other. This provides a framework
for constructing new formalisms by adapting and extending old ones. The
formalism is developed with the algebraic specification formalism ASF+4SDF.
It provides the following features: lexical and context-free syntax, variables,
disambiguation by priorities, regular expressions, character classes and modu-
lar definitions. New are the uniform treatment of lexical syntax, context-free
syntax and variables, the treatment of regular expressions by normalization
yielding abstract syntax without auxiliary sorts, regular expressions as result
of productions and modules with hidden imports and renamings.

Key Words & Phrases: syntax definition formalism, language design, context-
free grammar, context-free syntax, lexical syntax, priorities, regular expres-
sions, formal language, parsing, abstract syntax, module, renaming, hidden
imports

Note: Supported by the Dutch Organization for Scientific Research (NWO) un-
der grant 612-317-420: Incremental parser generation and context-dependent
disambiguation, a multi-disciplinary perspective.

1 Introduction

1.1 General

New programming, specification and special purpose languages are being developed
continuously [C*94]. Syntax definition formalisms play a crucial role in the design
and implementation of new languages. Syntax definition formalisms also play a
role embedded in other languages: regular expressions in edit operations, macro
definitions for macro preprocessors, user definable infix or distfix operators in pro-
gramming languages, grammars as signatures in algebraic specification formalisms,
and documents that contain a description of their own syntax.

The core of many syntax definition formalisms is formed by context-free gram-
mars, which are widely used in computer science since their introduction by Chomsky
in 1956 [Cho56]. A context-free grammar is a set of string rewrite rules of the form
a — A. A string w is member of the language described by a grammar G if it can
be rewritten to the start symbol S, i.e.. if there is a sequence w = ag — ay; — ... —
a, = S and each step has the form a;3;vi — a;B;~; where 3; — B; is a production
inG.

Despite. or maybe due to. the simplicity of this basic structure there has never
emerged a standard formalism for syntax definition. The Backus Naur Form (BNF)
[Bac59, N*60], originally developed for the definition of the syntax of Algol, is a
commonly used notation for context-free grammars, but it does not have the status
of a standard. Several standard notations for syntax definition have been proposed
[Wir77, Wil82]. None of these has been convincing, instead a number of similar or
overlapping formalisms exist.

Proceedings of ASF+SDF95. A workshop on Generating Tools from Algebraic Specifications.
May 11 & 12, 1995, CWI, Amsterdam, M.G.J. van den Brand, A. van Deursen, T.B. Dinesh,
J.F.Th. Kamperman & E. Visser (eds.) Technical Report P9504, Programming Research
Group, University of Amsterdam

Multi-Purpose Syntax Definition with SDF3

) {) " ' 1Y 1% . . 2 "
Luis Eduardo Amorim de Souza! and Eelco Visser?

! Australian National University, Australia
2 Delft University of Technology, The Netherlands

Abstract. SDF3 is a syntax definition formalism that extends plain
context-free grammars with features such as constructor declarations,
declarative disambiguation rules, character-level grammars, permissive
syntax, layout constraints, formatting templates, placeholder syntax, and
modular composition. These features support the multi-purpose inter-
pretation of syntax definitions, including derivation of type schemas for
abstract syntax tree representations, scannerless generalized parsing of
the full class of context-free grammars, error recovery, layout-sensitive
parsing, parenthesization and formatting, and syntactic completion. This
paper gives a high level overview of SDF3 by means of examples and pro-
vides a guide to the literature for further details.

Keywords: Syntax definition - programming language - parsing.

1 Introduction

A syntax definition formalism is a formal language to describe the syntax of
formal languages. At the core of a syntax definition formalism is a grammar
formalism in the tradition of Chomsky’s context-free grammars [14] and the
Backus-Naur Form [4]. But syntax definition is concerned with more than just
phrase structure, and encompasses all aspects of the syntax of languages.

In this paper, we give an overview of the syntax definition formalism SDF3
and its tool ecosystem that supports the multi-purpose interpretation of syntax
definitions. The paper does not present any new technical contributions, but
it is the first paper to give a (high-level) overview of all aspects of SDF3 and
serves as a guide to the literature. SDF3 is the third generation in the SDF
family of syntax definition formalisms, which were developed in the context of
the ASF+SDF [5], Stratego/XT [10], and Spoofax [38] language workbenches.

The first SDF [23] supported modular composition of syntax definition, a di-
rect correspondence between concrete and abstract syntax, and parsing with the
full class of context-free grammars enabled by the Generalized-LR (GLR) pars-
ing algorithm [56,44]. Its programming environment, as part of the ASF+SDF
MetaEnvironment [40], focused on live development of syntax definitions through

To appear in: F. S. de Boer and A. Cerone (Eds.). Software Engineering and Formal
Methods (SEFM 2020), LNCS, Springer, 2020.

SDF2

A Family of Syntax Definition Formalisms

Eelco Visser

Programming Research Group, University of Amsterdam,
Kruislaan 403, NL-1098 SJ Amsterdam, The Netherlands
email: visser@fwi.uva.nl, http://adam.fwi.uva.nl /~visser/

Abstract. In this paper we design a syntax definition formalism as a family
of formalisms. Starting with a small kernel, various features for syntax de-
finition are designed orthogonally to each other. This provides a framework
for constructing new formalisms by adapting and extending old ones. The
formalism is developed with the algebraic specification formalism ASF+SDF.
It provides the following features: lexical and context-free syntax, variables,
disambiguation by priorities, regular expressions, character classes and modu-
lar definitions. New are the uniform treatment of lexical syntax, context-free
syntax and variables, the treatment of regular expressions by normalization
vielding abstract syntax without auxiliary sorts, regular expressions as result
of productions and modules with hidden imports and renamings.

— blivions snd contevtinal enles thae srise in seall

Key Words & Phrases: syntax definition formalism, language design, context-
free grammar, context-free syntax, lexical syntax, priorities, regular expres-
sions, formal language, parsing, abstract syntax, module, renaming, hidden
imports

Note: Supported by the Dutch Organization for Scientific Research (NWO) un-
der grant 612-317-420: Incremental parser generation and context-dependent
disambiguation, a multi-disciplinary perspective.

1 Introduction

1.1 General

New programming, specification and special purpose languages are being developed
continuously [C*94]. Syntax definition formalisms play a crucial role in the design
and implementation of new languages. Syntax definition formalisms also play a
role embedded in other languages: regular expressions in edit operations, macro
definitions for macro preprocessors, user definable infix or distfix operators in pro-
gramming languages, grammars as signatures in algebraic specification formalisms,
and documents that contain a description of their own syntax.

The core of many syntax definition formalisms is formed by context-free gram-
mars, which are widely used in computer science since their introduction by Chomsky
in 1956 [Cho56]. A context-free grammar is a set of string rewrite rules of the form
a — A. A string w is member of the language described by a grammar G if it can
be rewritten to the start symbol S, i.e., if there is a sequence w = ag — ay — ... —
a, = S and each step has the form a;3;vi — a:B8;~; where 3; — B; is a production
in G.

Despite, or maybe due to, the simplicity of this basic structure there has never
emerged a standard formalism for syntax definition. The Backus Naur Form (BNF)
[Bac59, N*60], originally developed for the definition of the syntax of Algol, is a
commonly used notation for context-free grammars, but it does not have the status
of a standard. Several standard notations for syntax definition have been proposed
[Wir77, Wil82]. None of these has been convinecing, instead a number of similar or
overlapping formalisms exist.

Proceedings of ASF+SDF95. A workshop on Generating Tools from Algebraic Specifications.
May 11 & 12, 1995, CWI, Amsterdam, M.G.J. van den Brand, A. van Deursen, T.B. Dinesh,
J.F.Th. Kamperman & E. Visser (eds.) Technical Report P9504, Programming Research

Group, University of Amsterdam

1995

Building Program Optimizers with Rewriting Strategies®

Eelco Visser', Zine-e
Pacific

' Dept. of Comp. Science and Engineering, Orego|
‘ Dopt. of Computer Science, Portland
visserQacm.org,

Abstract

We describe a language for defining term rewriting

pios, and its application to the production of p

““nizgers. Valid transformations on program te
peribed by a set of rewrite rules; rewriting strat
M to describe when and how the various rules
plied in order to obtain the desired optimizati
parating rules from strategies in this fashion ma
to reason about the bebaviof of the optimizer a
mpared to traditional monolithic optimizer imp
ns. We illustrate the expressiveness of our lan
g it to describe a simple optimizer for an ML-i
khate representation
The bawic strategy language uses operators suc
fntial composition, choice, and recursion to bui
mers from a set of labeled uncoanditional rewri

b also define an extended language in which t

The Spoofax Language Workbench

Rules for Declarative Specification of Languages and IDEs

Lennart C. L. Kats Eelco Visser

Intrinsically-Typed Definitional Interpreters
for Imperative Languages

CASPER BACH POULSEN, Delft University of Technology, The Netherlands
ARJEN ROUVOET, Delft University of Technology, The Netherlands
ANDREW TOLMACH, Portland State University, USA

k. and in nartienlar to lanonacec

Institute of Information and Comp|
P.O. Box 80089 3508 TB,

http://www.strat

Delft University of Technology RODDLD RLRRLDC o niversity of Technology, The Netherlands
i, o of Technology, The Netherlands
Le.l kats@tudelft.nl
T o o H
\N ebD SL- A Cabe St Udy 11 semantics of an object language in terms of the (well-known) semantics
. . . . anding and validation of the semantics through execution. Combining
DOlIlalll'S eClﬁC La.ll uage Ell meerin hrate type system requires a separate type safety proof. An alternative
ype sy q P YP yPp
hguages, is to use a dependently-typed language to encode the object
Abstract n of the abstract syntax. Using such intrinsically-typed abstract syntax
timachaclar tovarifi antamaticalli that the interpreter satisfies type
Spoofax 5 a language workbench for efficient, agile dd .
opment of textual domain-specific languages with state A Theory of Name Resolution
the-art IDE support. Spoofax integrates language proces Agda th
wechniques for parser generation, meta-programming, 'h"O“t‘;
IDE development into a single environment. It uses cong mplex
declarative specifications for langeages and IDE service Pierre Neron!, Andrew Tolmach?, Eelco Visser!, and Guido Wachsmuth® being ¢
. e o) hguages.
this paper we describe the archirecture of Spoofax and . bning
woduce idioms for high-level specifications of languagd Delft University of Technology, The Netherlands, scope §
mantics using rewrite rules, showing how analyses ca Abstract. Th {p.j.m.neron,e.visser,g.wachsmuth}@tudelft.nl ped intel
rgmwd for lmmform.ﬂigm.axlc gcncr.tlion.}.md editor :' o ‘l ‘ - 2 Portland State University, Portland, OR, USA lus with
vices such as error marking, reference resolving, and con e progucivi tolmach@ d
' 4 ‘ Pes B erplate code. Iy olmach@pdx .edu |
. . hes that TEXJILITES A S0 pe fheq
Program Transformation with Stratego/XT - 2 '
Aving rexquires toechne
: : n the s . ; . . c
Rules, Strategies, Tools, and Systems in Stratego/XT 0.9 met hodology Abstract. We describe a language-independent theory for name binding pes, scq
design patterns and resolution, suitable for programming languages with complex scop-
ﬁ'n cm;' to tackk comm ing rules including both lexical scoping and modules. We formulate name
Eelco] blution as a two-stage problem. First a language-independent scope 1E°'“2‘
. . - bram. L
PIE: A Domain-Speciﬁc Language for Inte ractive Software ph is constructed using language-specific rules from an abstract syn-
L nt Pineli tree. Then references in the scope graph are resolved to correspond-
) o Developme ipelines declarations using a language-independent resolution process. We etherlar]
visser .
. . . roduce a resolution calculus as a concise, declarative, and language- elftnl; 4
Gabriel Konat®, Michael J. Steindorfer®, Sebastian Erdweg®, and Eelco o . . ‘ suag ty of Tec
. ependent specification of name resolution. We develop a resolution evissel
VIssera rithm that e crnimed and commnlote with roacnect ta the calenling Bacard

Abstract. Stratego/XT is a framework
systems aiming to support a wide range

work consists of the transformation lang
transformation tools. Stratego is based

control of programmable rewriting strd
for the infrastructure of transformation
printing. The framework addresses the ¢
from the specification of transformations
systems. This chapter gives an overview
composition of transformation systems

the abstraction levels of rules, strategies,

1 Introduction

Program transformation, the automatic ma
the context of compilation for the implen|
ers [28]. While compilers are rather special
systems are becoming widespread. In the
the generation of programs from specificat
neering process. In refactoring [21], transfq
in order to improve its design. Other appli
migration and reverse engineering. The cd
increase programmer productivity by autoni
With the advent of XML, transformatio
of programming language processing, mak
any scenario where structured data play arol
are applicable in document processing. In tu
(ASP) for the generation of web-pages in
of program generators such as Jostraca [3
concrete syntax of the object language are i
Stratego/XT is a framework for the dew
to support a wide range of program transf
transformation language Stratego and the X
ego is based on the paradigm of rewriting
ing strategies. The XT tools provide facilit

C. Lengauer et al. (Eds.): Domain-Specific Program G
(© Springer-Verlag Berlin Heidelberg 2004

Multi-Purpose Syntax Definition with SDF3

Luis Eduardo Amorim de Souza' and Eelco Visser?

! Australian National University, Australia
2 Delft University of Technology, The Netherlands

Abstract. SDF3 is a syntax definition formalism that extends plain
context-free grammars with features such as constructor declarations,
declarative disambiguation rules, character-level grammars, permissive
syntax, layout constraints, formatting templates, placeholder syntax, and
modular composition. These features support the multi-purpose inter-
pretation of syntax definitions, including derivation of type schemas for
abstract syntax tree representations, scannerless generalized parsing of
the full class of context-free grammars, error recovery, layout-sensitive
parsing, parenthesization and formatting, and syntactic completion. This
paper gives a high level overview of SDF3 by means of examples and pro-
vides a guide to the literature for further details.

a Delft University of Technology, The Netherands

Abstract

Context. Saftware develpment pipelines are used for autamating essential parts of safty
processes, such as buikl automation and continuous integration testing. In particular, an¢
which process events in a live environment such as an IDE, require timely results far low
and persistence to retain low latency feadback between restarts.

Inquiry. Developing an incrementalized and persistent version of a pipeline is ane way tq
latency, but require s implementation of dependency tracking, cache invalklatian, and othed
error-prane techniues. Therefore, interactivity complicates pipeline development if time
tence become respansibilities of the pipeline programmer, rather than being supported H
system. Systems for programming incremental and persistent pipelines exist, but do not fo
velpment, requiring a high degree of bailerplate, increasing deve lopment and maintenand
Approach. We develap Pipelines for Interactive Enviranments (PI), a Damain SpecificLan
and runtime for developing interactive saftware develpment pipelines, where ease of dey
cus. The PIE DSLis a statically typed and lexically scoped language. PIE programs are comy
implementing the APl, which the PIE runtime executes in an incremental and persistent wi
Knowledge. PIE provides a straightforward programming model that enables direat and ©
af pipelines without boilerplate, reducing the development and maintenance effart of pig
pipeline programs can be embedded into interactive environments such as code editors |
timely feadback at a bow mst.

Ground ing. Compared to the state of the art, PIE reduces the code required to express an in|
by afacorof 6 in a ase study an syntax-aware editars. Furthermore, we evaluate PIE in tf
camplex interactive software development scenarias, demanstrating that PIE can handle co
pipelines in astraightforward and cancise way.

Importance. Interactive pipelines are complicated saftware artifacts that power many i
such as contimous feedback cycles in IDEs and code editars, and 1ive language develap]
warkbenches. New pipelines, and evalution of existing pipelines, is frequently necessary. TH
for exsily developing and maintaining interactive pipelines, such as PIE, is impartant.

ACM CCS2012

* Software and tsengineering - Domain specific languages; Development fameworks 3
environments; Source code generation Runtime environments;

Keywords domain-specific language, pipeline, intemctve software development, increms

The Art, Science, and Engineering of Programming
e

Submitted December 1, 2017

Published March 29, 2018

A Constraint Language for Static
Semantic Analysis Based on Scope Graphs

Hendrik van Antwerpen

TU Delft, The Netherlands
h.vanantwerpen@tudelft.nl

Eelco Visser

TU Delft, The Netherlands
visser@acm.org

Abstract

In previous work, we introduced scope graphs as a formalism for
describing program binding structure and performing name resolu-
tion in an AST-independent way. In this paper, we show how to use
scope graphs to build static semantic analyzers. We use constraints
extracted from the AST to specify facts about binding, typing, and
initialization. We treat name and type resolution as separate build-
ing blocks, but our approach can handle language constructs—such
as record field access—for which binding and typing are mutually
dependent. We also refine and extend our previous scope graph the-
ory to address practical concerns including ambiguity checking and
support for a wider range of scope relationships. We describe the
details of constraint generation for amodel language that illustrates
many of the interesting static analysis issues associated with mod-
ules and records.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages): Formal Definitions and Theory; D.3.2 [Programming
Languages]: Language classifications; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs; D.3.4 [Programming Languages): Processors; F.3.2
[Logics and Meanings of Programs)]: Semantics of Programming
Languages; D.2.6 [Software Engineering]: Programming Envi-
ronments

Keywords Language Specification; Name Binding; Types: Do-
main Specific Languages; Meta-Theory

1. Introduction

Language workbenches [6] are tools that support the implemen-
tation of full-fledged programming environments for (domain-
specific) programming languages. Ongoing research investigates
how to reduce implementation effort by factoring out language-
independent implementation concerns and providine hieh-level

Pierre Néron

TU Delft, The Netherlands
p.j-m.neron@tudelft.nl

Andrew Tolmach

Portland State University, USA
tolmach@pdx.edu

Guido Wachsmuth

TU Delft, The Netherlands
guwac@acm.org

meta-languages for the specification of syntactic and semantic as-
pects of a language [18]. Such meta-languages should (i) have a
clear and clean underlying theory; (i) handle a broad range of
common language features: (iii) be declarative, but be realizable
by practical algorithms and tools; (iv) be factored into language-
specific and language-independent parts, to maximize re-use; and
(v) apply to erroneous programs as well as to correct ones.

In recent work we showed how name resolution for lexically-
scoped languages can be formalized in a way that meets these cri-
teria [14]. The name binding structure of a program is captured in
a scope graph which records identifier declarations and references
and their scoping relationships, while abstracting away program de-
tails. Its basic building blocks are scopes, which correspond to sets
of program points that behave uniformly with respect to resolution.
A scope contains identifier declarations and references, each tagged
with its position in the original AST. Scopes can be connected
by edges representing lexical nesting or import of named collec-
tions of declarations such as modules or records. A scope graph
is constructed from the program AST using a language-dependent
traversal, but thereafter, it can be processed in a largely language-
independent way. A resolution calculus gives a formal definition
of what it means for a reference to resolve to a declaration. Res-
olutions are described as paths in the scope graph obeying certain
(language-specific) criteria; a given reference may resolve to one
or many declarations (or to none). A derived resolution algorithm
computes the set of declarations to which each reference resolves,
and is sound and complete with respect to the calculus.

In this paper, we refine and extend the scope graph framework
of [14] to a full framework for static semantic analysis. In essence,
this involves uniting a type checker with our existing name reso-
lution machinery. Ideally, we would like to keep these two aspects
separated as much as possible for maximum modularity. And in-
deed, for many language constructs, a simple two-stage approach—
name resolution using the scope graph followed by a separate type

evvott) d sl Dove b 5211 b

R TR P P [|

Keywords: Syntax definition - programming language - parsing.

Introduction

syntax definition formalism is a formal language to describe the syntax of
mal languages. At the core of a syntax definition formalism is a grammar
'malism in the tradition of Chomsky’s context-free grammars [14] and the
ckus-Naur Form [4]. But syntax definition is concerned with more than just
rase structure, and encompasses all aspects of the syntax of languages.

In this paper, we give an overview of the syntax definition formalism SDF3
1 its tool ecosystem that supports the multi-purpose interpretation of syntax
finitions. The paper does not present any new technical contributions, but
s the first paper to give a (high-level) overview of all aspects of SDF3 and
ves as a guide to the literature. SDF3 is the third generation in the SDF
nily of syntax definition formalisms, which were developed in the context of
b ASF+SDF [5], Stratego/XT [10], and Spoofax [38] language workbenches.
The first SDF [23] supported modular composition of syntax definition, a di-
t correspondence between concrete and abstract syntax, and parsing with the
| class of context-free grammars enabled by the Generalized-LR (GLR) pars-
- algorithm [56,44]. Its programming environment, as part of the ASF+SDF
ptaEnvironment [40], focused on live development of syntax definitions through

Fo appear in: F. S. de Boer and A. Cerone (Eds.). Software Engineering and Formal
ethods (SEFM 2020), LNCS, Springer, 2020.

A Family of Syntax Definition Formalisms

Eelco Visser

Programming Research Group, University of Amsterdam,
Kruislaan 403, NL-1098 SJ Amsterdam, The Netherlands
il: visser@fwi.uva.nl, http://adam.fwi.uva.nl /~visser/

Abstract. In this paper we design a syntax definition formalism as a family
of formalisms. Starting with a small kernel, various features for syntax de-
finition are designed orthogonally to each other. This provides a framework
for constructing new formalisms by adapting and extending old ones. The
formalism is developed with the algebraic specification formalism ASF+SDF.
It provides the following features: lexical and context-free syntax, variables,
disambiguation by priorities, regular expressions, character classes and modu-
lar definitions. New are the uniform treatment of lexical syntax, context-free
syntax and variables, the treatment of regular expressions by normalization
vielding abstract syntax without auxiliary sorts, regular expressions as result
of productions and modules with hidden imports and renamings.

Key Words & Phrases: syntax definition formalism, language design, context-
free grammar, context-free syntax, lexical syntax, priorities, regular expres-
sions, formal language, parsing, abstract syntax, module, renaming, hidden
imports

Note: Supported by the Dutch Organization for Scientific Research (NWO) un-
der grant 612-317-420: Incremental parser generation and context-dependent
disambiguation, a multi-disciplinary perspective.

1 Introduction

1.1 General

New programming, specification and special purpose languages are being developed
continuously [C*94]. Syntax definition formalisms play a crucial role in the design
and implementation of new languages. Syntax definition formalisms also play a
role embedded in other languages: regular expressions in edit operations, macro
definitions for macro preproc user definable infix or distfix operators in pro-
gramming languages, grammars gnatures in algebraic specification formalisms,
and documents that contain a description of their own syntax.

The core of many syntax definition formalisms is formed by context-free gram-
mars, which are widely used in computer science since their introduction by Chomsky
in 1956 [Cho56). A context-free grammar is a set of string rewrite rules of the form
a — A. A string w is member of the language described by a grammar G if it can
be rewritten to the start symbol S, i.e.. if there is a sequence w = ag — ay — ... —
oy, = S and each step has the form o;53ivi — aiBBivi where 3; — B; is a production
in G.

Despite, or maybe due to, the simplicity of this basic structure there has never
emerged a standard formalism for syntax definition. The Backus Naur Form (BNF)
[Bac59, N*60], originally developed for the definition of the syntax of Algol, is a
commonly used notation for context-free grammars, but it does not have the status
of a standard. Several standard notations for syntax definition have been proposed
[Wir77, Wil82]. None of these has been convinecing, instead a number of similar or
overlapping formalisms exist.

Proceedings of ASF+SDF95. A workshop on Generating Tools from Algebraic Specifications.
May 11 & 12, 1995, CWI, Amsterdam, M.G.J. van den Brand, A. van Deursen, T.B. Dinesh,
J.F.Th. Kamperman & E. Visser (eds.) Technical Report P9504, Programming Research
Group, University of Amsterdam

SDF3

Multi-Purpose Syntax Definition with SDF3

Luis Eduardo Amorim de Souza! and Eelco Visser?
» ! Australian National University, Australia
? Delft University of Technology, The Netherlands

Abstract. SDF3 is a syntax definition formalism that extends plain
context-free grammars with features such as constructor declarations,
declarative disambiguation rules, character-level grammars, permissive
syntax, layout constraints, formatting templates, placeholder syntax, and
modular composition. These features support the multi-purpose inter-
pretation of syntax definitions, including derivation of type schemas for
abstract syntax tree representations, scannerless generalized parsing of
the full class of context-free grammars, error recovery, layout-sensitive
parsing, parenthesization and formatting, and syntactic completion. This
paper gives a high level overview of SDF3 by means of examples and pro-
vides a guide to the literature for further details.

Keywords: Syntax definition - programming language - parsing.

1 Introduction

A syntax definition formalism is a formal language to describe the syntax of
formal languages. At the core of a syntax definition formalism is a grammar
formalism in the tradition of Chomsky’s context-free grammars [14] and the
Backus-Naur Form [4]. But syntax definition is concerned with more than just
phrase structure, and encompasses all aspects of the syntax of languages.

In this paper, we give an overview of the syntax definition formalism SDF3
and its tool ecosystem that supports the multi-purpose interpretation of syntax
definitions. The paper does not present any new technical contributions, but
it is the first paper to give a (high-level) overview of all aspects of SDF3 and
serves as a guide to the literature. SDF3 is the third generation in the SDF
family of syntax definition formalisms, which were developed in the context of
the ASF+SDF [5], Stratego/XT [10], and Spoofax [38] language workbenches.

The first SDF [23] supported modular composition of syntax definition, a di-
rect correspondence between concrete and abstract syntax, and parsing with the
full class of context-free grammars enabled by the Generalized-LR (GLR) pars-
ing algorithm [56.44]. Its programming environment, as part of the ASF+4+SDF
MetaEnvironment [40], focused on live development of syntax definitions through

To appear in: F. S. de Boer and A. Cerone (Eds.). Software Engineering and Formal
Methods (SEFM 2020), LNCS, Springer, 2020.

2020

History of SDF

SDF | 1989

The Syntax Definition Formalism SDF [1989]
- Heering, Hendriks, Klint, Rekers

Lexical Syntax + Context-free Syntax
- Separate scanner, parser
- Syntax definition = algebraic signature

Generalized LR Parsing

- Support full class of context-free grammars
- Lazy, iIncremental, modular scanner, parser generation

Modular Syntax Definition
ASF+SDF MetaEnvironment

SDF2 1 1995 - 2010

Scannerless Generalized LR (SGLR) Parsing [1997]
- Support character-level grammars
- Lexical disambiguation (follow restrictions, reject productions)

Disambiguation Filters for Associativity and Priority
- Shallow conflicts: Unsafe for prefix/postfix operators with low priority

A Family of Syntax Definition Formalism [1995]
- Transform high-level language to Kernel SDF

Language Composition
- Meta-programming with concrete object syntax [2002]
- Concrete object syntax [2004]

Spoofax Language Workbench [2010]

SDF3 12010 - 2020

Multi-Purpose Syntax Definition
- Many tools from single source

Templates
- Formatting instructions from syntax definition

Semantics of Associativity and Priority

- Safe and Complete Disambiguation, Deep conflicts
- Parenthesis insertion

Layout-Sensitive Syntax
- layout constraints, layout declarations

Spoofax 2

Education

- Compiler Construction
- Language Engineering Project

Research
- Syntax definition in Spoofax Language Workbench

- Meta-Language Design: NaBL, Statix, Stratego, FlowSpec, ...
- DSLs: WebDSL, IceDust, PIE

Industry

- Oracle Labs: Graph Analytics
- Canon: Oil, CSX
- Philips/MasCot: Software Restructuring

Main SDF3 Contributors

Error Recovery
- Kats, De Jonge

Templates
- Vollebregt, Kats

Layout Constraints
- Erdweg

Layout Declarations
- Eduardo Amorim

Disambiguation
- Eduardo Amorim

Syntactic Completion
- Eduardo Amorim

JSGLR2 (in progress)
- Denkers, Sijim

SDF3 Implementation
- Eduardo Amorim

This Talk

Phrase Structure
- constructors

Formatting Templates
- syntactic completion

Declarative Disambiguation
- from unsafe to safe disambiguation

Layout Constraints/Declarations
- for layout-sensitive syntax

Take away: Multi-Purpose Interpretation
- See paper for more

Phrase Structure

What is Syntax?

(fun x > x + 3) vy

Syntax = Structure of Programs

context-free syntax (fun x > x + 3) vy

EXp — ||(|| EXp ||)||

Exp.Int INT

Exp.Var 1D

Exp.Add Exp "+" EXp
EXp.Fun "fun" IDx "—" EXp

EXp.App EXp EXp

Kats, Visser, Wachsmuth: Pure and
declarative syntax definition: paradise
lost and regained. Onward 2010

Constructors = Abstract Syntax Tree

context-free syntax
Exp = "(" Exp ")" {bracket}

Exp.Int = INT
Exp.Var = 1D

Exp.Add Exp "+" EXp

N

EXp. "fun" IDx "—" EXp
Exp.Fun Exp.Var

EXp. EXp EXp

X Exp.Var Exp.Int
|

Kats, Visser, Wachsmuth: Pure and <

declarative syntax definition: paradise
lost and regained. Onward 2010

Abstract Syntax Terms

(fun x > x + 3) vy

context-free syntax
Exp = "(" Exp ")" {bracket}

Exp.Int INT

A4

Exp.Var 1D

Exp.Add Exp "+" EXp

App (

EXp.FUh "'Fun" TD* n_yn EXp FUh(["X"], Add(var,(nxn)’ Int(ll3ll)))

, Var("y")
)

EXp.App EXp EXp

Kats, Visser, Wachsmuth: Pure and
declarative syntax definition: paradise
lost and regained. Onward 2010

Syntax Definition = Algebraic Signature

signature
sorts INT ID EXxp
constructors

context-free syntax
Exp = "(" Exp ")" {bracket}

Exp.Int = INT

Int : INT — EXp

Var : ID — EXp

Add : Exp * Exp — EXp

Fun : List(ID) * Exp — EXxp
App : Exp * Exp — EXp

Exp.Var = 1D
Exp.Add = Exp "+" EXp

EXp.Fun "fun" IDx "—" EXp

Exp.App = Exp Exp
* App (
Fun([an] , Add(\/ar‘("X") , Int(||3||)))

(fun x > x + 3) vy
. Var\(nyn)

Kats, Visser, Wachsmuth: Pure and)
declarative syntax definition: paradise
lost and regained. Onward 2010

Parsing Declaratively

parse(yield(t)) = t

vield : ParseTree — String
parse : String — ParseTree

Syntax = Structure

Language Designers

focus on
Structure of Programs

Formatting Templates

parse = (implode ; format)-1

context-free syntax let
Exp = <(<Exp>)> {bracket} inc = fun x > x + 1
in
Exp.Int INT inc 3

¥ parse; implode

Exp.Var 1D

Let(
[Bnd(
"Iinc"
, Fun(["x"1, Add(Var("x"), Int("1")))
)

Exp.Add <<Exp> + <Exp>>
EXp. [fun [ID*] — [Exp]l]

EXp.App <<Exp> <Exp>>]

, App(Var("inc"), Int("3"))
)

Exp.Let = <
let <{Bnd "\n\n"}*>
in <Exp>
>
let 1nc = fun X = x + 1
Bnd.Bnd = <<ID> = <Exp>> in 1nc 3

Vollebregt, Kats, Visser: Declarative specification of template-based textual editors. LDTA 2012

Parsing + Formatting Declaratively

implode(parse(format(t))) = t

format : AST — String
1mplode : ParseTree — AST
parse . String — ParseTree

Syntactic Completion = Rewriting Incomplete Programs

let
inc = fun x & x + 1
in
inc $Exp
“=Var

“=Fun

o= et
« = Add

e IfT

let
inc = fun x =5 x + 1
in |
inc let y = BExp
in $Exp = Var
“~Sub
“*Fun

“Let
“~App

$Exp $Exp

Explicit incompleteness: extend
language with placeholders

Completion: rewrite placeholders

Templates:Formatting proposals

Soundness:
Only syntactically correct
proposals

Completeness:
Reach all programs

De Souza Amorim, Erdweg, Wachsmuth Visser. Principled syntactic code completion using placeholders. SLE 2016

Notation = Formatting

How does structure map to text?

Declarative
Disambiguation

Ambiguous Grammar

context-free syntax

EXp.Int
Exp.Var

Exp.Min
Exp.Add
ExXp.Mul

INT

1D

<<Exp> - <Exp>>
<<Exp> + <Exp>>
<<EXp> * <Exp>>

context-free syntax

EXp.Int
Exp.Var

Exp.M1n
Exp.Add
EXp.Mul

INT

1D

<<EXp> - <Exp>>
<<Exp> + <Exp>>
<<EXxp> * <Exp>>

Ambiguous Grammar

Ambiguous Sentence has Multiple Parse Trees

context-free syntax
Exp.Int
Exp.Var
Exp.Min
Exp.Add
EXp.Mul

INT

1D

<<Exp> - <Exp>>
<<Exp> + <Exp>>
<<Exp> * <Exp>>

Disambiguation with Associativity and Priority Rules

context-free syntax context-free syntax

Exp.Int = INT Exp.Min = <<Exp> - <Exp>> {left}
Exp.Var = 1ID Exp.Add = <<Exp> + <Exp>> {left}
Exp.Min = <<Exp> - <EX Exp.Mul = <<Exp> * <Exp>> {left}
Exp.Add = <<Exp> + <EX context-free priorities
Exp.Mul = <<Exp> * <EX Exp.Mul > {left: Exp.Min Exp.Add}

Associativity and Priority as Subtree Exclusion Rules [SDF2 (1997)]

A.Ci left AGBA.(q right A. (o

Rules

Instances

Disambiguation by Subtree Exclusion

context-free syntax
Exp.Min = <<Exp> - <Exp>> {left}
Exp.Add = <<Exp> + <Exp>> {left}
Exp.Mul = <<Exp> * <Exp>> {left}
context-free priorities
Exp.Mul > {left: Exp.Min Exp.Add}

Safe for High Priority Prefix Operators

E.Min > E.Add E.Min > E.Mul

| Min Min
Conflict o~
Patterns Add

E + E

Trees

Unsafe for Low Priority Prefix Operators [SDF2]

E.Add > E.Lam E.Add > E.Lam Afroozeh, van den Brand,
S —_— Johnstone, Scott, Vinju: Safe
Add Add specification of operator
Conflict precedence rules. SLE 2013
Patterns

Trees

Safe Subtree Exclusion Rules [SDF3 (2019)]

A.C; left AG B A.Ciright A.G

Rules
Right Recursive Iin Left Recursive In
Left Recursive Position Right Recursive Position
conflict pattern: Amorim, Visser: A direct
\ right recursive semantics of declarative
disambiguation rules.
Conflict (Under revision)
Patterns

not a conflict pattern:
\ not left recursive

Shallow Interpretation: Safe for Low Priority Prefix Operators

E.Add > E.Lam E.Add > E.Lam
Add Add

Conflict
Patterns

Trees

Shallow Interpretation: Incomplete for Low Priority Prefix Operators

E.Add > E.Lam E.Add > E.Lam

E.Pow > E.LamBE.Pow > E.Lam

Conflict
Patterns

Trees

Deep Priority Conflicts: Match Subpattern in Right-Most Subtree

E.Add > E.Lam
Add

E.Add > E.LamB E.Add > E.Lam

Amorim, Visser: A direct
semantics of declarative
disambiguation rules.
(Under revision)

Infinite set of conflict patterns

Safe and Complete Disambiguation Rules

context-free syntax
Exp.Min = <<Exp> - <Exp>> {left}
Exp.Add = <<Exp> + <Exp>> {left}
Exp.Mul = <<Exp> * <Exp>> {left}
context-free priorities
Exp.Mul > {left: Exp.Min Exp.Add}

Unsafe: Too Many Disambiguation Rules

context-free syntax
Exp.Min = <<Exp> - <Exp>> {left}
Exp.Add = <<Exp> + <Exp>> {left}
Exp.Mul = <<Exp> * <Exp>> {left}
context-free priorities
Exp.Mul
> {left, right: Exp.Min Exp.Add}

Incomplete: Too Few Disambiguation Rules

context-free syntax
Exp.Min = <<Exp> - <Exp>> {left}
Exp.Add = <<Exp> + <Exp>> {left}
Exp.Mul = <<Exp> * <Exp>> {left}
context-free priorities

{left: Exp.Min Exp.Add} “la+b*c-d|°?
/ / ™
Add
I

Mul
| I
a + Min Add * Min
T T
a + bc - d

matches

Mul > Min Add 1left Min Mul > Min

Semantics of Associativity and Priority

What is the semantics of associativity and priority rules?
- Subtree exclusion: (deep) tree patterns that are forbidden

|s a set of disambiguation rules safe?
- At most one rule for each pair of productions

Is a set of disambiguation rules complete?
- At least one rule for each pair of productions

Correctness guaranteed by language definition
- Manual disambiguation by transformation of grammars is non-trivial
- Proof of safety and completeness is non-trivial

Parenthesize = Disambiguate-1 (Insert Necessary Parentheses)

context-free syntax (a + (let x = b inc)) + d

Exp = <(<Exp>)> {bracket}

INT
1D
<<Exp> + <Exp>> {left}

Exp.Int
Exp.Var
Exp.Add

Add (
Add (
Var("a")
. Let([Bnd("x", Var("b"))]1, Var("c"))

Exp.Let
Bnd.Bnd

<let <Bnd*> in <Exp>>
<<ID> = <Exp>>

context-free priorities)

EXD.Add > EXp.Let) VaP("d")

Layout-Sensitive
Syntax

Layout-Sensitive Languages

guessValue x = do
putStrLn "Enter your guess:"
guess < getlLilne

case compare (read guess) x of
EQ — putStrLn "You won!"
— do putStrLn "Keep guessing."
guessValue X

Token Selectors ldentify Two-Dimensional Structure

Alignment with Layout Constraints

context-free syntax
Exp.Do "do" ExplList
ExpL1ist.Cns EXp
ExpList.Lst = ExpList Exp {layout(l.first.col = 2.first.col)}

Erdweg, Rendel, Kastner, and Ostermann. Layout-Sensitive Generalized Parsing. SLE 2012

Alignment Declaration

context-free syntax
Exp.Do "do" ExplList
ExpL1ist.Cns EXp
ExpList.Lst = exps:ExpList exp:Exp {layout(align exps exp)}

: X.first.col = y.first.col
Semantics _—

align X vy

Amorim, Steindorfer, Erdweg,Visser: Declarative specification of indentation rules. SLE 2018

List Alignment Declaration

context-free syntax

"do" exps:Exp+ {layout(align-1list exps)}
1D

Exp+ Exp // normalized

Exp // productions

Exp.Do
Exp.1d
EXp+

: A+ = A+ A layout(l.first.col = 2.first.col)
Semantics -

allign-list X

Offside Rule

do

]‘?rs . left = null

“The offside rule prescribes that all non-whitespace tokens of a structure must be

further to the right than the token that starts the structure.”
Erdweg et. al.. Layout-Sensitive Generalized Parsing. In SLE’| 2.

Offside with Layout Constraints

context-free syntax
Exp.Do "do" Exp {layout(2.left.col > 2.first.col)}
Exp.Add = Exp "+" Exp {left}

do

]‘?rs . left = null

“The offside rule prescribes that all non-whitespace tokens of a structure must be

further to the right than the token that starts the structure.”
Erdweg et. al.. Layout-Sensitive Generalized Parsing. In SLE’| 2.

Offside

context-free syntax
Exp.Do "do" exp:Exp {layout(offside exp)}
Exp.Add = Exp "+" Exp {left}

do

]‘?rs . left = null

: X.left.col > x.first.col
Semantics e EE——

offside Xx

Relative Offside

context-free syntax
Exp.Do "do" exp:Exp {layout(offside "do" exp)}
Exp.Add = Exp "+" Exp {left}
1D

left = null

YT Y- left.col > x.first.col

offside x y

Indentation

context-free syntax
Exp.Do "do" exp:Exp {layout(indent "do" exp)}
Exp.Add = Exp "+" Exp {left}
Exp.1d

first

o

first

: y.first.col > x.first.col
Semantics -

indent x vy

Newline + Indentation

context-free syntax
Exp.Do = "do" exp:Exp {layout(newline-indent "do" exp)}
Exp.Add = Exp "+" Exp {left}

: y.first.col > x.first.col && y.first.line > x.last.line
ki — ——————————————————————

newline-indent x y

Layout Constraints

How does program layout
disambiguate structure?

Spoofax Language
Workbench

M R @0 Qe @@ X G-

4 N
[Package Explorer 3 =N =
- ? ° \ El% (@ fun.sdf3 23\ (® *example16.mpsd 23\

¥ &g > mpsd-sdf3 [sdf-papers master]

» =\ JRE System Library [JavaSE-1.8] 1module fun 1let

» =\ Maven Dependencies 2 imports lex 2 Tlookup = fun x env —

> (*% src/main/strategies 5 context-free start-symbols EXxp match env

» (% editor 4 sorts Exp Case Bnd Pat with | nil — error

> Zysrc 5 context-free syntax | cons (pair y v) env —

v &= src-gen 6 EXp <(<Exp>)> {bracket} if x = y then v else lookup X env
> @completion 7 Exp.Int INT
:gf:r':‘gt‘:;”res 8 Exp.Var = ID in lookup 1 (cons 2 nil)

@ fun.sdf3 9 Exp.Min [-[Exp]]
> G5 pp 10 Exp.Sub = <<Exp> - <Exp>> {left} y
v & signatures 11 Exp.Add = <<Exp> + <Exp>> {left} @ examplel16.aterm 52 _
@ alg-sig.str 12 Exp.Mul = <<Exp> * <Exp>> {left} 1 Let/(
@ fun-layout-sensitive-sig.str 15 Exp.Eq <<Exp> = <Exp>> {left} [Bnd(
@ fun-sig.str 14 Exp.Fun [fun [ID*x] — [Expl] "Lookup"
@ lex-layout-sensitive-sig.str 15 Exp.App = <<Exp> <Exp>> {left} , Fun(
@ lex-sig.str . 16 EXp.Let < [lleI, llenvll]
’mpsd-sFif3-5|g.str 17 let <{Bnd "\n\n"}*> , Match(
& query-sig.str 18 in <Exp> Var("env")

¥ (= syntax
erynormalized 19> , [Case(Pvar("nil"), Vvar("error"))

@ fun.sdf 20 Bnd.Bnd = <<ID> = <Exp>> , Case(
Y] metaborg.component.yaml 21 Exp.IfE = < PApp (

v (/%> syntax 22 if <EXp> then PADD(
@ alg.sdf3 23 <Exp> PVar("cons")
& > fun-layout-sensitive.sdf3 24 else , PApp(PApp(PVar("pair"), PVar("y")), PVar("
& > fun.sdf3 25 <Exp>)
4 lex-layout-sensitive.sdf3 2% > PVar("env")

o > lex.sdf3 B
@ > mpsd-sdf3.sdf3 27 Exp.IfT = <)

2 query.sdf3 28 if <Exp> then , IfE(
> (= target 29 <Exp> Eq(var("x"), Var("y"))
» [ytrans 30 > , Var("v")
%metaborg.yaml 31 Exp.Match = < , App(App(Var("lookup"), Var("x")), Var("env")
v} pom.xmi 32 match <Exp>
H_J'ﬂREADME-md 33 with <{Case "\n"}+>
V iz > mpsd-sdf3.example [sdf-papers master] 34 S {longest-match}

» =\ JRE System Library [JavaSE-1.8] 35 Case.Case [| [Pat] — [Exp]l]
» =\ Maven Dependencies
56 Pat.Pvar ID
|
¥ 57 > examples 37 Pat.PApp <<Pat> <Pat>> {left}

@ example.aterm
@ exampleO1.aterm 58 Pat <(<Pat>)> {bracket}

2 example01.mpsd 39 context-free priorities 28, App(

@ example02.aterm 40 Exp.Min > Exp.App 29 App(Var("lookup"), Int("1"))

@ example02.mpsd 41 > {left: Exp.Sub Exp.Add} 30 , App(App(var("cons"), Int("2")), Vvar("nil"))
® example03.aterm 42 > Exp.Eq > Exp.IfE > Exp.IfT 31)

&% example03.mpsd 43 > Exp.Match > Exp.Fun > Exp.Let, 32

¢ example03.pp.mpsd 44 Exp.App <1> .> Exp.Min

@ exampleO4.aterm ~
¢ example04.mpsd 45 template options

- N

Writable Insert

Conclusion

Multi-Purpose Syntax Definition with SDF3

High-Level Declarative Domain-Specific Language
- Context-free grammars extended with

- Constructors

- Template productions

- Disambiguation rules

- Layout constraints

- All syntactic aspects of language in one specification

Multi-Purpose Interpretation

- Parsing, Recovery, Syntax Highlighting, Formatting, Completion, Fuzzing,
Testing, Parenthesis Insertion, Signature Generation, ...

- Possible because high-level and declarative

A work In progress

Generalization: Multi-Purpose Language Definition

High-Level Declarative Domain-Specific Language
- Declarative semantics

- Abstracts from implementation detalls

- All aspects of language in one specification

Multi-Purpose Interpretation

- Many tools from one specification

- Execution, Generation, Fuzzing, Analysis, Completion, Reverse
Engineering, ...

Other Spoofax Meta-Languages

Statix
- static semantics (w/ scope graphs)

Dynamix
- dynamic semantics

FlowSpec
- data-flow analysis

Stratego
- transformation strategies

Other Domains

WebDSL

- Web programming

lceDust
- declarative data modeling
- derivation of incremental computation

CSX

- configuration space exploration

A Vision for Formal Methods

Domain-Specific Language
- encodes rules of the domain
- declarative semantics: formally specified, easy to understand

- users focus on domain programs

Multiple Interpretations

- operational semantics: sound wrt declarative semantics
- intrinsically verified (sound by construction)

- operational semantics = implementation

Language Designer’'s Workbench
- helps you put this all together with meta-DSLs

Sooner than another 25 years ... ?

