The Spoofax Language Workbench

Eelco Visser

]
TUDelft

Online Workshop: Modern Compiler Technologies 2020

Huawei | Moscow | November 11, 2020

What is Spoofax?

A tool for implementing programming languages
- Open source and freely available

- Used in education, research, and industry

- Requires a lot of software engineering to maintain

A long term research project

- Incubator for language engineering research

- Basis for implementation and evaluation of 100+ papers

- Imperfect approximation of a language designer’s workbench

Spoofax in Action

Research
- Language Engineering, Language Prototyping

Education
- Compiler Construction (Minidava, ChocoPYy)
- Language Engineering Project

Academic Workflow Engineering
- WebDSL (researchr.org, WeblLab, ...)

Industry

- Oracle Labs: Graph Analytics
- Canon: Several DSLs

- Philips: Software Restructuring

http://researchr.org
http://researchr.org

Meta-Languages for Language Definition

Meta-languages
- Syntax definition with SDF3

- Static semantics with Statix

- Data-flow analysis with FlowSpec

- Transformation with Stratego

- Dynamic Semantics with DynSem/Dynamix
- Editor service definition with ESV

Declarative Syntax
Definition with SDF3

Multi-purpose Syntax Definition
with SDF3

Luis Eduardo de Souza Amorim! and Eelco Visser2(®)

! Australian National University, Canberra, Australia
% Delft University of Technology, Delft, The Netherlands
e.visser@tudelft.nl

Abstract. SDF3 is a syntax definition formalism that extends plain
context-free grammars with features such as constructor declarations,
declarative disambiguation rules, character-level grammars, permissive
syntax, layout constraints, formatting templates, placeholder syntax, and
modular composition. These features support the multi-purpose inter-
pretation of syntax definitions, including derivation of type schemas for
abstract syntax tree representations, scannerless generalized parsing of
the full class of context-free grammars, error recovery, layout-sensitive
parsing, parenthesization and formatting, and syntactic completion. This
paper gives a high level overview of SDF'3 by means of examples and pro-
vides a guide to the literature for further details.

Keywords: Syntax definition + Programming language * Parsing

1 Introduction

A syntax definition formalism is a formal language to describe the syntax of
formal languages. At the core of a syntax definition formalism is a grammar
formalism in the tradition of Chomsky’s context-free grammars [14] and the
Backus-Naur Form [4]. But syntax definition is concerned with more than just
phrase structure, and encompasses all aspects of the syntax of languages.

In this paper, we give an overview of the syntax definition formalism SDF3
and its tool ecosystem that supports the multi-purpose interpretation of syntax
definitions. The paper does not present any new technical contributions, but
it is the first paper to give a (high-level) overview of all aspects of SDF3 and
serves as a guide to the literature. SDF3 is the third generation in the SDF
family of syntax definition formalisms, which were developed in the context of
the ASF+SDF [5], Stratego/XT [10], and Spoofax [38] language workbenches.

The first SDF [23] supported modular composition of syntax definition,
a direct correspondence between concrete and abstract syntax, and parsing
with the full class of context-free grammars enabled by the Generalized-LR
(GLR) parsing algorithm [44,56]. Its programming environment, as part of the
ASF+SDF MetaEnvironment [40], focused on live development of syntax defi-
nitions through incremental and modular scanner and parser generation [24—26]
in order to provide fast turnaround times during language development.

© The Author(s) 2020
F. de Boer and A. Cerone (Eds.): SEFM 2020, LNCS 12310, pp. 1-23, 2020.
https://doi.org/10.1007 /978-3-030-58768-0_1

Declarative Syntax Definition

Representation
- Syntax trees

Specification Formalism: SDF3
- Productions + Constructors + Templates + Disambiguation

Declarative Semantics
- Well-formedness of syntax trees wrt syntax definition

Language-Independent Tools

- Parser

- Formatting based on layout hints in grammar
- Syntactic completion

Syntax = Structure

module structure let

inc = function(x) { x + 1 }
imports Common in

inc(3)
context-free start-symbols EXxp end

context-free syntax
Exp.Var = 1ID
Exp.Int INT

Exp.Add Exp "+" Exp
Let(
EXp.FUh "fUﬂC'tion" ||(|| {ID ||,||}_* ||)|| ||_{|| EXp ||}|| [Bnd(
"-i_nC"
Exp.App = Exp "(" {Exp ","}x ")" , Fun(["x"], Add(Var("x"), Int("1")))
)
Exp.Let "let" Bnd* "in" Exp "end"]

, App(Var("inc”), [Int("3")]1)
Bnd.Bnd ID "=" EXp)

Parsing = Formatting-

context-free syntax let
inc = function(x) { x + 1 }
Exp.Var = <<ID>> 1n
1nc(3)
Exp.Int = <<INT>> end

Exp.Add = <<Exp> + <Exp>>

Let(
[Bnd(
"inc"
, Fun(["x"], Add(Var("x"), Int("1")))
)
]
, App(Var("inc™), [Int("3")])
)

Exp.Fun = <
function(<{ID ","}*>){
<Exp>

<<Exp>(<{Exp ","}*>)>

let
inc = function(x){
X 1

end 3

> 1n
inc(3)

Bnd.Bnd = <<ID> = <Exp>> end

Completion = Rewrite(Incomplete Structure)

class A { class A {

public int m() { public int m() {
int Xx; int Xx;
x = $ERp; + $Exp;
return+Add $SExp + $Exp $Exp + $Exp
} +Sub
} +Mul
+Lt
+VarRef +VarRef

class A {

public int m() { public int m() {
int x; int x;
x = 21 + BExp|; ;
return x;+Add ($Exp + $Exp) return Xx;
} +Sub }
} +Mul }
+Lt
+VarRef

Disambiguation

Ambiguity = Multiple Possible Parses

context-free syntax
Exp = <(<Exp>)> {bracket}

Exp.Int
Exp.Var
Exp.Add

INT
ID
<<Exp> + <Exp>>

Exp.Fun <function(<{ID ", "}*>) <Exp>>
EXp.App <<Exp> <Exp>> amb (

[Add(Var("a"), Add(Var("b"), Var("c")))

Exp.Let <let <Bnd*> in <Exp>> " Add(Add(Var("a"), Var("b")), Var("c"))

Bnd.Bnd <<ID> = <Exp>>)]

Exp.If <if(<Exp>) <Exp>>
Exp.IfElse <if(<Exp>) <Exp> else <Exp>>

Exp.Match <match <Exp> with <{Case "|"}+>>
Case.Case [[Pat] — [Exp]l]

Pat.PVar 1D
Pat.PApp <<Pat> <Pat>>

context-free
EXp

Exp.Int
Exp.Var
Exp.Add

EXp.Fun
EXp.App

EXp.Let
Bnd.Bnd

Exp.If
Exp.IfELlse

Exp.Match
Case.(Case

Pat.PVar
Pat.PApp

Disambiguation = Select(Structure)

syntax

<(<Exp>)> {bracket}
INT

1D

<<Exp> + <Exp>>

<function(<{ID ", "}*>) <Exp>>
<<Exp> <Exp>>

<let <Bnd*> in <Exp>>
<<ID> = <Exp>>

<if(<Exp>) <Exp>>
<if(<Exp>) <Exp> else <Exp>>

<match <Exp> with <{Case "|"}+>>
[[Pat] — [Exp]]

1D
<<Pat> <Pat>>

amb (
[Add(Var("a"), Add(Var("b"), Var("c")))
, Add(Add(var("a"), Var("b")), Var("c"))
]

)

Add (Add(var("a"™), Var("b™)), Var("c"))

Declarative Disambiguation = Separate Concern

context-free syntax
Exp = <(<Exp>)> {bracket}

Exp.Int
Exp.Var
Exp.Add

INT
ID
<<Exp> + <Exp>> {left}

Exp.Fun <function(<{ID ", "}*>) <Exp>>
Exp.App <<Exp> <Exp>> {left}

Exp.Let <let <Bnd*> in <Exp>>

.Bnd <<ID> = <Exp>>

Exp.If <if(<Exp>) <Exp>>
Exp.IfElse <if(<Exp>) <Exp> else <Exp>>

Exp.Match = <match <Exp> with <{Case "|"}+>>
{longest-match}
Case.Case [[Pat] — [Exp]l]

Pat.PVar ID

Pat.PApp <<Pat> <Pat>> {left}
context-free priorities

Exp.App > Exp.Add > Exp.IfElse > Exp.If

> Exp.Match > Exp.Let > Exp.Fun

Associativity = Solve Intra Operator Ambiguity

context-free syntax
Exp = <(<Exp>)> {bracket}

Exp.Int
Exp.Var
Exp.Add

INT
ID
<<Exp> + <Exp>> {left}

Exp.Fun <function(<{ID ", "}*>) <Exp>>
Exp.App <<Exp> <Exp>> {left}

Exp.Let <let <Bnd*> in <Exp>> amb (

[Add(Var("a"), Add(Var("b"), Var("c")))
, AddCAdd(Var("a"), Var("b")), Var("c"))
]

)

.Bnd <<ID> = <Exp>>

Exp.If <if(<Exp>) <Exp>>
Exp.IfElse <if(<Exp>) <Exp> else <Exp>>

Exp.Match = <match <Exp> with <{Case "|"}+>>
{longest-match}

Case.Case [[Pat] — [Exp]l] '
Pat.PVar 1D
Pat.PApp <<Pat> <Pat>> {left}

context-free priorities

Exp.App > Exp.Add > Exp.IfElse > Exp.If
> Exp.Match > Exp.Let > Exp.Fun

Add(Add(Var("a"), Var("b")), Var("c"))

Priority = Solve Inter Operator Ambiguity

context-free syntax
Exp = <(<Exp>)> {bracket}

Exp.Int
Exp.Var
Exp.Add

INT
ID
<<Exp> + <Exp>> {left}

Exp.Fun <function(<{ID ", "}*>) <Exp>>
Exp.App <<Exp> <Exp>> {left}

Exp.Let <let <Bnd*> in <Exp>> amb (

[AddCApp(Var("f"), Var("a")), Var("b"))
, App(Var("f"), Add(Var("a"), Var("b")))
]

)

.Bnd <<ID> = <Exp>>

Exp.If <if(<Exp>) <Exp>>
Exp.IfElse <if(<Exp>) <Exp> else <Exp>>

Exp.Match = <match <Exp> with <{Case "|"}+>>
{longest-match}

Case.Case [[Pat] — [Exp]l] '
Pat.PVar 1D
Pat.PApp <<Pat> <Pat>> {left}

context-free priorities

Exp.App > Exp.Add > Exp.IfElse > Exp.If
> Exp.Match > Exp.Let > Exp.Fun

AddCApp(Var("f"), Var("a")), Var("b"))

Dangling Else = Operators with Overlapping Prefix

context-free syntax 1f(1) 1f(2) 3 else 4
Exp = <(<Exp>)> {bracket}

Exp.Int
Exp.Var
Exp.Add

INT
ID
<<Exp> + <Exp>> {left} amb (

IfElse
Exp.Fun <function(<{ID ", "}*>) <Exp>> i Int(gl")

Exp.App <<Exp> <Exp>> {left} CIFCINtC"2™Y, Int("3™))

] : Int("4")
Exp.Let <let <Bnd*> in <Exp>>)

_ , If(
.Bnd <<ID> = <Exp>> Tnt("1™")

, IfElse(Int("2"), Int("3"), Int("4"))

Exp.If <if(<Exp>) <Exp>>
Exp.IfElse <if(<Exp>) <Exp> else <Exp>>

Exp.Match = <match <Exp> with <{Case "|"}+>>
{longest-match}
Case.Case [[Pat] — [Exp]l]

Pat.PVar ID
Pat.PApp <<Pat> <Pat>> {left} If(
context-free priorities Int("1")
Exp.App > Exp.Add > Exp.IfElse > Exp.If , IfElse(Int("2"), Int("3"), Int("4"))
> Exp.Match > Exp.Let > Exp.Fun)

Parenthesize

Parenthesize = Disambiguate-! (Insert Necessary Parentheses)

context-free syntax
Exp = <(<Exp>)> {bracket}

Exp.Int
Exp.Var
Exp.Add

INT
ID
<<Exp> + <Exp>> {left}

Exp.Fun <function(<{ID ", "}*>) <Exp>>

Exp. App <<Exp> <Exp>> {left} Add(Add(Var("a"), Var("b")), Var("c"))

Exp.Let <let <Bnd*> in <Exp>>

.Bnd <<ID> = <Exp>>

Exp.If <if(<Exp>) <Exp>>
Exp.IfElse <if(<Exp>) <Exp> else <Exp>>

Exp.Match = <match <Exp> with <{Case "|"}+>>
{longest-match}
Case.Case [[Pat] — [Exp]l]

Pat.PVar ID

Pat.PApp <<Pat> <Pat>> {left}
context-free priorities

Exp.App > Exp.Add > Exp.IfElse > Exp.If

> Exp.Match > Exp.Let > Exp.Fun

Parenthesize = Disambiguate-! (Insert Necessary Parentheses)

context-free syntax a+ (let x = b in (c + d))
Exp = <(<Exp>)> {bracket}

Exp.Int
Exp.Var
Exp.Add

INT

1D
<<Exp> + <Exp>> {left} +

Exp.Fun <function(<{ID ", "}*>) <Exp>>
Exp.App <<Exp> <Exp>> {left}

Add (
Var("a")
, Let(
[Bnd("x", Var("b"))]

Exp.If <if(<Exp>) <Exp>> 5 Add(var("c"), Var("d"))

Exp.IfElse <if(<Exp>) <Exp> else <Exp>>)

Exp.Let <let <Bnd*> in <Exp>>

.Bnd <<ID> = <Exp>>

Exp.Match = <match <Exp> with <{Case "|"}+>>
{longest-match}
Case.Case [[Pat] — [Exp]l]

Pat.PVar ID

Pat.PApp <<Pat> <Pat>> {left}
context-free priorities

Exp.App > Exp.Add > Exp.IfElse > Exp.If

> Exp.Match > Exp.Let > Exp.Fun

Parenthesize = Disambiguate-! (Insert Necessary Parentheses)

context-free syntax (a + (let x = b in c)) + d
Exp = <(<Exp>)> {bracket}
INT
1D
<<Exp> + <Exp>> {left}

Exp.Fun <function(<{ID ", "}*>) <Exp>>
Exp.App <<Exp> <Exp>> {left} Add (

Add (
Exp.Let <let <Bnd*> in <Exp>> Var("a")

, Let([Bnd("x", Var("b"))1, Var("c"))

.Bnd <<ID> = <Exp>>)
, Var("d")

Exp.If <if(<Exp>) <Exp>>)
Exp.IfElse <if(<Exp>) <Exp> else <Exp>>

Exp.Int
Exp.Var
Exp.Add

Exp.Match = <match <Exp> with <{Case "|"}+>>
{longest-match}
Case.Case [[Pat] — [Exp]l]

Pat.PVar ID

Pat.PApp <<Pat> <Pat>> {left}
context-free priorities

Exp.App > Exp.Add > Exp.IfElse > Exp.If

> Exp.Match > Exp.Let > Exp.Fun

SDF3 Interpretations

Parser
Error recovery

Statement.If = < Pretty-printer
1T (<Exp>)
<Statement> Abstract syntax tree schema
else

ntacti lorin
<Statement> Sy actic coloring

Syntactic completion

Folding rules

Outline rules

Generating Artifacts from Syntax Definitions

Language
Brarar Formatter Independent
Generator Generator

User-Defined
Specification

ParseGen Program

Formatting

Rules
Generated

Artifact

Parser

Algebraic Completion
Signature Rules

Completion
Generator

Declarative Type
System Specification
with Statix

Scopes as Types

HENDRIK VAN ANTWERPEN, Delft University of Technology, Netherlands
CASPER BACH POULSEN, Delft University of Technology, Netherlands
ARJEN ROUVOET, Delft University of Technology, Netherlands

EELCO VISSER, Delft University of Technology, Netherlands

Scope graphs are a promising generic framework to model the binding structures of programming languages,
bridging formalization and implementation, supporting the definition of type checkers and the automation
of type safety proofs. However, previous work on scope graphs has been limited to simple, nominal type
systems. In this paper, we show that viewing scopes as types enables us to model the internal structure of
types in a range of non-simple type systems (including structural records and generic classes) using the
generic representation of scopes. Further, we show that relations between such types can be expressed in
terms of generalized scope graph queries. We extend scope graphs with scoped relations and queries. We
introduce Statix, a new domain-specific meta-language for the specification of static semantics, based on scope
graphs and constraints. We evaluate the scopes as types approach and the Statix design in case studies of the
simply-typed lambda calculus with records, System F, and Featherweight Generic Java.

CCS Concepts: « Software and its engineering — Semantics; Domain specific languages;

Additional Key Words and Phrases: static semantics, type system, type checker, name resolution, scope graphs,
domain-specific language

ACM Reference Format:
Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser. 2018. Scopes as Types. Proc.
ACM Program. Lang. 2, OOPSLA, Article 114 (November 2018), 30 pages. https://doi.org/10.1145/3276484

1 INTRODUCTION

The goal of our work is to support high-level specification of type systems that can be used for multi-
ple purposes, including reasoning (about type safety among other things) and the implementation of
type checkers [Visser et al. 2014]. Traditional approaches to type system specification do not reflect
the commonality underlying the name binding mechanisms for different languages. Furthermore,
operationalizing name binding in a type checker requires carefully staging the traversals of the
abstract syntax tree in order to collect information before it is needed. In this paper, we introduce
an approach to the declarative specification of type systems that is close in abstraction to traditional
type system specifications, but can be directly interpreted as type checking rules. The approach is
based on scope graphs for name resolution, and constraints to separate traversal order from solving
order.

Authors’ addresses: Hendrik van Antwerpen, Delft University of Technology, Delft, Netherlands, H.vanAntwerpen@tudelft.
nl; Casper Bach Poulsen, Delft University of Technology, Delft, Netherlands, C.B.Poulsen@tudelft.nl; Arjen Rouvoet, Delft
University of Technology, Delft, Netherlands, A.J.Rouvoet@tudelft.nl; Eelco Visser, Delft University of Technology, Delft,
Netherlands, E.Visser@tudelft.nl.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2018 Copyright held by the owner/author(s).
2475-1421/2018/11-ART114
https://doi.org/10.1145/3276484

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 114. Publication date: November 2018.

Knowing When to Ask

Sound Scheduling of Name Resolution in Type Checkers Derived from Declarative Specifications

ARJEN ROUVOET, Delft University of Technology, The Netherlands

HENDRIK VAN ANTWERPEN, Delft University of Technology, The Netherlands

CASPER BACH POULSEN, Delft University of Technology, The Netherlands

ROBBERT KREBBERS, Radboud University and Delft University of Technology, The Netherlands
EELCO VISSER, Delft University of Technology, The Netherlands

There is a large gap between the specification of type systems and the implementation of their type checkers,
which impedes reasoning about the soundness of the type checker with respect to the specification. A
vision to close this gap is to automatically obtain type checkers from declarative programming language
specifications. This moves the burden of proving correctness from a case-by-case basis for concrete languages
to a single correctness proof for the specification language. This vision is obstructed by an aspect common
to all programming languages: name resolution. Naming and scoping are pervasive and complex aspects
of the static semantics of programming languages. Implementations of type checkers for languages with
name binding features such as modules, imports, classes, and inheritance interleave collection of binding
information (i.e., declarations, scoping structure, and imports) and querying that information. This requires
scheduling those two aspects in such a way that query answers are stable—i.e., they are computed only after
all relevant binding structure has been collected. Type checkers for concrete languages accomplish stability
using language-specific knowledge about the type system.

In this paper we give a language-independent characterization of necessary and sufficient conditions to
guarantee stability of name and type queries during type checking in terms of critical edges in an incomplete
scope graph. We use critical edges to give a formal small-step operational semantics to a declarative specifica-
tion language for type systems, that achieves soundness by delaying queries that may depend on missing
information. This yields type checkers for the specified languages that are sound by construction—i.e., they
schedule queries so that the answers are stable, and only accept programs that are name- and type-correct
according to the declarative language specification. We implement this approach, and evaluate it against
specifications of a small module and record language, as well as subsets of Java and Scala.

CCS Concepts: » Theory of computation — Constraint and logic programming; Operational seman-
tics.

Additional Key Words and Phrases: Name Binding, Type Checker, Statix, Static Semantics, Type Systems

ACM Reference Format:

Arjen Rouvoet, Hendrik van Antwerpen, Casper Bach Poulsen, Robbert Krebbers, and Eelco Visser. 2020.
Knowing When to Ask: Sound Scheduling of Name Resolution in Type Checkers Derived from Declarative
Specifications. Proc. ACM Program. Lang. 4, OOPSLA, Article 180 (November 2020), 28 pages. https://doi.org/
10.1145/3428248

Authors’ addresses: Arjen Rouvoet, a.j.rouvoet@tudelft.nl, Delft University of Technology, The Netherlands; Hendrik
van Antwerpen, h.vanantwerpen@tudelft.nl, Delft University of Technology, The Netherlands; Casper Bach Poulsen,
c.b.poulsen@tudelft.nl, Delft University of Technology, The Netherlands; Robbert Krebbers, mail@robbertkrebbers.nl,
Radboud University and Delft University of Technology, The Netherlands; Eelco Visser, e.visser@tudelft.nl, Delft University
of Technology, The Netherlands.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2020 Copyright held by the owner/author(s).
2475-1421/2020/11-ART180
https://doi.org/10.1145/3428248

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 180. Publication date: November 2020.

Declarative Static Semantics Definition with Statix

Representation
- Scope graph

Specification Formalism: Statix
- Type constraints + scope graph constraints + resolution policies

Declarative Semantics
- Scope graph of program satisfies specification

Language-Independent Tools
- [ype checking

- Refactoring / Renaming

- Code completion

20

Logic Programming

Predicates Represent Program Properties

rules // type of ...

typeOfType : scope * Type — TYPE
typeOfExp : scope * Exp — TYPE

rules // well-typedness of ...

declOk : scope * Decl
declsOk maps declOk(*, Tlist(*))

bindOk : scope * scope * Bind
bindsOk maps bindOk(*, =*, Tlist(x*))

Use maps to apply a predicate to
all elements of a list

Statix is a pure logic programming language
A Statix specification defines predicates

If a predicate holds for some term, the term has
the property represented by the predicate

typeOfExp(s, e) = T
expression e has type T in scope S

typeOfType(s, t) = T
syntactic type t has semantic type T in scope S

decl0k(s, d)
declaration d is well-defined (OKk) in scope S

Predicates are Defined by Rules

Predicate

typeOfExp : scope * Exp — TYPE

typeOfExp(s, Add(el, e2)) = INT() :-

typeOfExp(s, el) INT(),
typeOfExp(s, e2) INT()

For all s, el, e2

If the premises are true, the head is true

From Declarative Definition to Type Checker

1 + 2 % 3 Syntax
Parser Definition in
true §& false SDF3
Parse k
Errors
o 9> 1. 8& (true_ || false) . .
0 « Signature in
) Highlightin Statix
11> 1f 1 = 1 then s
true
else '
Type Type System

Programs with
Names

Programs with Names

module Names { Name binding key in programming

module Even A Ianguages

import 0dd

def even = fun(x) N
if x = 0 then true else odd(x - 1) Many name bmdmg pattems
1

module 0dd { Deal with erroneous programs
import Even

def odd = fun(x)
if x = 0 then false else even(x - 1) Name resolution complicates
}

type checkers, compilers

module Compute A
type Result = { input : Int, output : Bool }
def compute = fun(x)
Result{ input = x, output = 0dd.odd x }

Ad hoc non-declarative treatment

A systematic, uniform approach to
name resolution?

A Theory of Name Resolution

Pierre Neron!, Andrew Tolmach?, Eelco Visser!, and Guido Wachsmuth®

! Delft University of Technology, The Netherlands,
{p.j.m.neron,e.visser,g.wachsmuth}@tudelft.nl

2 Portland State University, Portland, OR, USA
tolmach@pdx.edu

Abstract. We describe a language-independent theory for name binding
and resolution, suitable for programming languages with complex scop-
ing rules including both lexical scoping and modules. We formulate name
resolution as a two-stage problem. First a language-independent scope
graph is constructed using language-specific rules from an abstract syn-
tax tree. Then references in the scope graph are resolved to correspond-
ing declarations using a language-independent resolution process. We
introduce a resolution calculus as a concise, declarative, and language-
independent specification of name resolution. We develop a resolution
algorithm that is sound and complete with respect to the calculus. Based
on the resolution calculus we develop language-independent definitions
of a-equivalence and rename refactoring. We illustrate the approach us-
ing a small example language with modules. In addition, we show how
our approach provides a model for a range of name binding patterns in
existing languages.

1 Introduction

Naming is a pervasive concern in the design and implementation of programming
languages. Names identify declarations of program entities (variables, functions,
types, modules, etc.) and allow these entities to be referenced from other parts
of the program. Name resolution associates each reference to its intended decla-
ration(s), according to the semantics of the language. Name resolution underlies
most operations on languages and programs, including static checking, trans-
lation, mechanized description of semantics, and provision of editor services in
IDEs. Resolution is often complicated, because it cuts across the local inductive
structure of programs (as described by an abstract syntax tree). For example,
the name introduced by a let node in an ML AST may be referenced by an
arbitrarily distant child node. Languages with explicit name spaces lead to fur-
ther complexity; for example, resolving a qualified reference in Java requires first
resolving the class or package name to a context, and then resolving the member
name within that context. But despite this diversity, it is intuitively clear that
the basic concepts of resolution reappear in similar form across a broad range of
lexically-scoped languages.

In practice, the name resolution rules of real programming languages are usu-
ally described using ad hoc and informal mechanisms. Even when a language

(© Springer-Verlag Berlin Heidelberg 2015
J. Vitek (Ed.): ESOP 2015, LNCS 9032, pp. 205-231, 2015.
DOI: 10.1007 /978-3-662-46669-8 9

Name Resolution with Scope Graphs

Scope Graph

let function fact(n : 1int) : 1nt =
1f n < 1 then
1

else
n * fact(n - 1)

fact(10)

end

Name Resolution

Declaring and
Resolving Names

Declarations and References

signature rules
constructors
Var : ID — EXp declOk : scope * Decl
Def : Bind — Decl declsOk maps declOk(x, Tlist(x*))
Bind : ID * Exp — Bind

o non

bindOk : scope * scope * Bind _
declaration and reference

rules rules

type0fExp(s, Var(x)) = typeOfVar(s, Xx). declareVar : scope * string * TYPE
typeOfVar : scope * string — TYPE
decl0k(s, Def(bind)) :-
bindOk(s, s, bind).

bindOk(s_bnd, s_ctx, Bind(x, e)) :- {T}
typeOfExp(s_ctx, e) = T,
declareVar(s_bnd, x, T).

Representing Name Binding with Scope Graphs

signature
namespaces
Var : string

name-resolution
resolve Var filter e resolution policy
relations declaration and reference
declaration relation

o non

typeOfDecl : occurrence — TYPE

rules

declareVar : scope * string * TYPE
typeOfVar : scope * string — TYPE

Representing Name Binding with Scope Graphs

signature
namespaces
Var : string

name-resolution
resolve Var filter e resolution policy
relations declaration and reference
declaration relation

typeOfDecl : occurrence — TYPE

o non

rules

declareVar : scope * string * TYPE
typeOfVar : scope * string — TYPE

declareVar(s, x, T) :- variable X is declared in
s — Var{x} with typeOfDecl T. scope S with type T

Representing Name Binding with Scope Graphs

signature
namespaces
Var : string
name-resolution
resolve Var filter e

typeOfDecl : occurrence — TYPE

rules

declareVar : scope * string * TYPE
typeOfVar : scope * string — TYPE

declareVar(s, x, T) :- variable X is declared in
s — Var{x} with typeOfDecl T. scope S with type T

typeOfVar(s, x) = T :- {x'}
type0fDecl of Var{x} in s — [(_, (Var{x'}, T))].

variable X in scope s resolves to
declaration x' with type T

How about shadowing?

Lexical Scope

New Scope and Scope Edge Constraints

signature
constructors
Let : ID * Exp * Exp — EXp

o non

rules

typeOfExp(s, Let(x, el, e2)) =T :- {S s_let}
typeOfExp(s, el) = S,

new s_let,

s_let -P> s,
declareVar(s_let, x, S), e

typeOfExp(s_let, e2) = T.

Path Wellformedness: Reachabillity

signature
constructors
Let : ID * Exp * Exp — EXp

rules

typeOfExp(s, Let(x, el, e2)) =T :- {S s_let}
typeOfExp(s, el) = S,

new s_let,

s_let -P> s,
declareVar(s_let, x, S), e

typeOfExp(s_let, e2) = T.

signature
namespaces
Var : string
name-resolution
resolve Var filter P*

path P+ allows resolution through zero or more P edges

Path Specificity: Visibility (Shadowing)

signature
constructors
Let : ID * Exp * Exp — EXp

rules

typeOfExp(s, Let(x, el, e2)) =T :- {S s_let}
typeOfExp(s, el) = S,

new s_Llet,
declareVar(s_let, x, S), Pe =Y

typeOfExp(s_let, e2) = T.

signature
namespaces
Var : string
name-resolution
resolve Var filter P* min $ < P

path P+ allows resolution through zero or more P edges

prefer local scope ($) over parent scope (P)

How about non-lexical bindings?

Non-Lexical Scope
(Modules)

Modules: Scopes as Types

signature def c = 0
constructors module A {
MOD : scope — TYPE Scope as type import B
Module : ID * 1list(Decl) — Decl def a = b + C
Import : ID — Decl }
module B {

def b = 2
rules +

decl0k(s, Module(m, decls)) :- {s_mod}
new s_mod, s_mod -P— s, lexical scope
declareMod(s, m, MOD(s_mod)),
declsOk(s_mod, decls). Scope as type

signature
namespaces
Mod : string

Resolving Import

signature def c = 0
constructors module A {
MOD : scope — TYPE Scope as type import B
Module : ID * 1list(Decl) — Decl def a = b + C
Import : ID — Decl }
module B {
def b = 2

rules +

decl0k(s, Module(m, decls)) :- {s_mod}
new s_mod, s_mod -P— s, lexical scope
declareMod(s, m, MOD(s_mod)),
declsOk(s_mod, decls). Scope as type

decl0k(s, Import(p)) :- {s_mod s_end}
typeOfModRef (s, p) =— MOD(s_mod), resolve import
s -I— s_mod.

signature
namespaces
Mod : string
name-resolution
resolve Mod
filter Px
min $ < I, $ <P, I<P

Import Edge

signature def c = 0
constructors module A {
MOD : scope — TYPE Scope as type import B
Module : ID * 1list(Decl) — Decl def a = b + C
Import : ID — Decl }
module B {
def b = 2

rules +

decl0k(s, Module(m, decls)) :- {s_mod}
new s_mod, s_mod -P— s, lexical scope
declareMod(s, m, MOD(s_mod)),
declsOk(s_mod, decls). Scope as type

decl0k(s, Import(p)) :- {s_mod s_end}
typeOfModRef (s, p) =— MOD(s_mod), resolve import
s -I— s_mod.

import edge

signature
namespaces
Mod : string
name-resolution
resolve Mod
filter Px
min $ < I, $ <P, I<P

Resolving through Import Edge

signature def c = 0
constructors module A {
MOD : scope — TYPE Scope as type import B
Module : ID * 1list(Decl) — Decl def a = b + C
Import : ID — Decl }
module B {
def b = 2

rules +

decl0k(s, Module(m, decls)) :- {s_mod}
new s_mod, s_mod -P— s, lexical scope
declareMod(s, m, MOD(s_mod)),
declsOk(s_mod, decls). Scope as type

decl0k(s, Import(p)) :- {s_mod s_end}
typeOfModRef (s, p) =— MOD(s_mod), resolve import
s -I— s_mod.

import edge

signature
namespaces
Var : string
name-resolution
resolve Var resolve through
filter Px Ix import edges
min $ < I, $ <P, I <P

Import vs Parent

signature def b = 0
constructors module A {
MOD : scope — TYPE Scope as type import B
Module : ID * list(Decl) — Decl def a = b
Import : ID — Decl }

module B {1 prefer blue path over red path

def b = 2
rules }

decl0k(s, Module(m, decls)) :- {s_mod}
new s_mod, s_mod -P— s, lexical scope
declareMod(s, m, MOD(s_mod)),
declsOk(s_mod, decls). Scope as type

decl0k(s, Import(p)) :- {s_mod s_end}
typeOfModRef (s, p) =— MOD(s_mod), resolve import
s -I— s_mod.

import edge

signature
namespaces
Var : string
name-resolution
resolve Var resolve through
filter Px Ix import edges
min $ < I, $ <P, I <P

prefer import

Mutual Imports

signature def c = 0
constructors module A {
MOD : scope — TYPE Scope as type import B
Module : ID * list(Decl) — Decl def a = b + C
Import : ID — Decl }

module B {

import A
rules def b 2
def d a

+ C

decl0k(s, Module(m, decls)) :- {s_mod} }
new s_mod, s_mod -P— s,
declareMod(s, m, MOD(s_mod)),
declsOk(s_mod, decls). Scope as type

decl0k(s, Import(p)) :- {s_mod s_end}
typeOfModRef (s, p) =— MOD(s_mod), resolve import
s -I— s_mod.

import edge

signature
namespaces
Var : string
name-resolution
resolve Var _
filter Px Ix import after parent

min $ < I, $ <P, I<P

prefer import

Mutual Imports

signature def c = 0
constructors module A {
MOD : scope — TYPE Scope as type import B
Module : ID * list(Decl) — Decl def a = b + C
Import : ID — Decl }

module B {

import A
rules def b 2
def d a

+ C

decl0k(s, Module(m, decls)) :- {s_mod} }
new s_mod, s_mod -P— s,
declareMod(s, m, MOD(s_mod)),
declsOk(s_mod, decls). Scope as type

decl0k(s, Import(p)) :- {s_mod s_end}
typeOfModRef (s, p) =— MOD(s_mod), resolve import
s -I— s_mod.

import edge

signature
namespaces
Var : string
name-resolution
resolve Var resolve through
filter Px Ix import edges
min $ < I, $ <P, I <P

prefer import

Transitive Import

signature module A {
constructors import B
MOD : scope — TYPE def a = b + c
Module : ID * list(Decl) — Decl }
Import : ID — Decl module B {
import C
def b = c¢c + 2
rules +
module C {
decl10k(s, Module(m, decls)) :- {s_mod} def c = 1
new s_mod, s_mod -P— s, }
declareMod(s, m, MOD(s_mod)),
declsOk(s_mod, decls).

decl0k(s, Import(p)) :- {s_mod s_end}
typeOfModRef (s, p) =— MOD(s_mod),
s -I— s_mod.

signature
namespaces
Var : string
name-resolution
resolve Var
filter Px I%
min $ < I, $ <P, I<P

Transitive Import

signature module A {
constructors import B

MOD : scope — TYPE def a = b + c
Module : ID * list(Decl) — Decl }
Import : ID — Decl module B {
import C
def b = c¢c + 2
rules +
module C {
decl10k(s, Module(m, decls)) :- {s_mod} def c = 1
new s_mod, s_mod -P— s, }
declareMod(s, m, MOD(s_mod)),
declsOk(s_mod, decls).

decl0k(s, Import(p)) :- {s_mod s_end}
typeOfModRef (s, p) =— MOD(s_mod),
s -I— s_mod.

signature
namespaces
Var : string
name-resolution
resolve Var
filter Px I%
min $ < I, $ <P, I<P

Statix Interpretations

Statix Interpretations (In Progress)

Declarative Semantics [OOPSLA’18]
—G E programOk(s, p)
- Does program p satisfy the programOKk predicate in scope s, given scope graph G?

Type Checking
- Given a program term p, what is valid scope graph G?

- Operational semantics is safe wrt declarative semantics [OOPSLA’20]
- Type check programs concurrently and/or incrementally

Code Completion [ECOOP’19]

- Given a hole (placeholder) in an incomplete program, what are valid completions?

Renaming
- Given a name X in a program, can it be renamed to y, without being captured?

Quick Fixes
- Given a name/type error in a program, what is repair that would solve the error?

Random Term Generation
- Given a placeholder (and type), randomly generate a program that is syntactically, binding, and type correct

Conclusion

Syntax
Definition

) (=] Desktop — bash — 37x16

Language

Static
Semantics

[08:48:10] ~/Desktop$ java Fib
Fib 6: 8
Fib 5: 8

[08:48:06] ~/Desktop$ javac Fib.java

J| Fib.java 2%

public class Fib {
public static int calc(int n) {
if(n < 2)

Design

Dynamic
Semantics

The Java™ Language
Specification
Java SE 7 Edition

Transform

Describing the Semantics of Java
and Proving Type Soundness

Sophia Drossopoulou and Susan Eisenbach

Department of Computing
Imperial College of Science, Technology and Medicine

Multi-purpose Declarative Meta-Languages

2012-07-27

variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [, [E1],J53], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

Language Design

Dynamic

. Transform
Semantics

O i Desktop — bash — 37x16 o D O C Describing the Semantics of Java

7

[08:48:06] ~/Desktop$ javac Fib.java] Fib.java 53 = O lhe Java™ Language e Provins fype Boundness

[08:48:10] ~/Desktop$ java Fib public class Fib { Specification
Flb 5 . 8 -Lf(n < 2) Imperial College of Science, Technology and Medicine

Sophia Drossopoulou and Susan Eisenbach

Multi-purpose Declarative Meta-Languages

} variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
2012-07-27 guages [, [B1],[53], there have not been many studies of the formal semantics of
wetual programming languages. In addition, the interplay of features which ar
very well understood in isolation, might introduce unexpected effects.

Language Design

DynSem Stratego

Dynamix

=] Desktop — bash — 37x16 "o D) O C Describing the Semantics of Java

[08:48:06] ~/Desktop$ javac Fib.java] Fib.java 53 = O lhe Java™ Language e Provine fype Boundness

[08:48:10] ~/Desktop$ java Fib public class Fib { Specification
g:.k; :: g = pul.)}czc stg’;lc int calc(int n) { Java SE 7 Edition . Department of Computing
1 . 1 n < mperial College of Science, lechnology and Medicine

=i |]:I][i.1 D |~~'~[|iz-|111‘ 1 and Susan Eisenbach

Multi-purpose Declarative Meta-Languages

} variables are implicitly pointers.

Furthermore, although there are a larce number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
2012-07-27 guages [I, [BN], 54, '114'“' have not bes n 2'.'1.:1]1}-"-‘-111-:5";-‘ 'Iiil the formal semantics of
wetual programming languages. In addition, the interplay of features which ar
very well understood in isolation, might introduce unexpected effects.

Eelco Visser

More Information

Research ¥ Teaching ¥ News Blog Contact

Publications by Year

See also: Projects | Talks | Posters | Archives | BibTex | Researchr | DBLP | Google Scholar | ACM DL | Researchgate

2020

Constructing Hybrid Incremental Compilers for Cross-Module Extensibility with an Internal Build System
Jeff Smits, Gabriél D. P. Konat, Eelco Visser.
Programming 4(3) 2020 [pdf, doi, bib, researchr]

FlowSpec: A declarative specification language for intra-procedural flow-Sensitive data-flow analysis
Jeff Smits, Guido Wachsmuth, Eelco Visser.
JCL (JVLC) 57 2020 [pdf, doi, bib, researchr]

Multi-Purpose Syntax Definition with SDF3
Luis Eduardo Amorim de Souza, Eelco Visser.
Software Engineering and Formal Methods - 18th International Conference, SEFM 2020 2020 [pdf, bib, researchr, abstract]

Intrinsically-typed definitional interpreters for linear, session-typed languages
Arjen Rouvoet, Casper Bach Poulsen, Robbert Krebbers, Eelco Visser.
CPP 2020 [pdf, doi, bib, researchr]

Safety and Completeness of Disambiguation corresponds to Termination and Confluence of Reordering
Luis Eduardo Amorim de Souza, Eelco Visser.
2020 [pdf, bib, researchr]

Editorial Message
Eelco Visser.
PACMPL 3(OOPSLA) 2019 [pdf, bib, researchr]

Fast and Safe Linguistic Abstraction for the Masses
Eelco Visser.
A Research Agenda for Formal Methods in the Netherlands 2019 [bib, researchr]

From Whole Program Compilation to Incremental Compilation: A Critical Case
Jeff Smits, Gabriél Konat, Eelco Visser.
Second Workshop on Incremental Computing (IC 2019) 2019 [pdf, bib, researchr]

Scopes and Frames Improve Meta-Interpreter Specialization
Vlad A. Vergu, Andrew Tolmach, Eelco Visser.
ECOOP 2019 [pdf, doi, bib, researchr]

Towards Language-Parametric Semantic Editor Services Based on Declarative Type System Specifications (Brave
New Idea Paper)

Daniél A. A. Pelsmaeker, Hendrik van Antwerpen, Eelco Visser.

ECOOP 2019 [pdf, doi, bib, researchr]

Towards language-parametric semantic editor services based on declarative type system specifications
Daniél A. A. Pelsmaeker, Hendrik van Antwerpen, Eelco Visser.
OOPSLA 2019 [pdf, doi, bib, researchr]

Precise, Efficient, and Expressive Incremental Build Scripts with PIE
Gabriél Konat, Roelof Sol, Sebastian Erdweg, Eelco Visser.
Second Workshop on Incremental Computing (IC 2019) 2019 [pdf, bib, researchr]

Spoofax

Search docs

The Spoofax Language Workbench
Examples

Publications

TUTORIALS

Installing Spoofax

Creating a Language Project
Using the API

Getting Support

LANGUAGE DEFINITION REFERENCE
Language Definition with Spoofax
Abstract Syntax with ATerms

Syntax Definition with SDF3

Static Semantics with NaBL2

Static Semantics with Statix
Data-Flow Analysis with FlowSpec
Transformation with Stratego

Dynamic Semantics with DynSem
Editor Services with ESV

Language Testing with SPT

LANGUAGE DEVELOPMENT REFERENCE
Build and Develop Languages
Configure Languages

Running Languages from Command-
line

Programmatic API|

Developing Spoofax

RELEASES

Latest Stable Release
Development Release
Release Archive

Migration Guides

CONTRIBUTIONS

Docs » The Spoofax Language Workbench ©) Edit on GitHub

The Spoofax Language Workbench

Spoofax is a platform for developing textual (domain-specific) programming languages. The platform
provides the following ingredients:

* Meta-languages for high-level declarative language definition
An interactive environment for developing languages using these meta-languages
Code generators that produces parsers, type checkers, compilers, interpreters, and other tools
from language definitions
Generation of full-featured Eclipse editor plugins from language definitions
Generation of full-featured IntelliJ editor plugins from language definitions (experimental)
An API for programmatically combining the components of a language implementation

With Spoofax you can focus on the essence of language definition and ignore irrelevant
implementation details.

Developing Software Languages

Spoofax supports the development of textual languages, but does not otherwise restrict what kind
of language you develop. Spoofax has been used to develop the following kinds of languages:

Programming languages

Languages for programming computers. Implement an existing programming language to create
an IDE and other tools for it, or design a new programming language.

Domain-specific languages

Languages that capture the understanding of a domain with linguistic abstractions. Design a
DSL for your domain with a compiler that generates code that would be tedious and error prone
to produce manually.

Scripting languages
Languages with a special run-time environment and interpreter
Work-flow languages
Languages for scheduling actions such as building the components of a software system
Configuration languages
Languages for configuring software and other systems
Data description languages
Languages for formatting data

Data modeling languages

Contributions Languages for describing data schemas

http://eelcovisser.org http://metabor

http://eelcovisser.org
http://eelcovisser.org
http://metaborg.org
http://metaborg.org

